PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 4 |

Tytuł artykułu

In vitro Study of biofilm growth on biologic prosthetics

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Biologic prosthetics are increasingly used for the repair of abdominal wall hernia defects but can become infected as a result of peri- or early post-operative bacterial contamination. Data evaluating biofilm formation on biologic prosthetics is lacking. The aim of this study was to investigate the influence of different biologic prosthetics on the growth behavior of two different bacterial species and their ability to form biofilms. Methicillin resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa were incubated on disks of two biologic prosthetics-human acellular dermis (ADM), and porcine small intestinal submucosa (SIS). The bacteria were allowed to attach to the prosthetics and propagate into mature biofilms for 24 hours at 37°C. Images of biofilms were obtained using confocal microscopy and scanning electron microscopy (SEM). The number of viable cells and the biofilm biomass were quantified by colony forming units (CFUs) and crystal violet staining respectively. Analysis of variance was performed to compare the mean values for the different prosthetics. Each biologic matrix had a distinct surface characteristic. SEM visualized mature biofilms characterized by highly organized multi-cellular structures on surface of both biologic prosthetics. Quantification of bacterial growth over time showed that ADM had the lowest CFUs and biofilm biomass at 24 hours post-inoculation compared to SIS for both bacterial strains. MRSA and P. aeruginosa can form mature biofilms on biologic prosthetics but the relative abundance of the biofilm varies on different prosthetic constructs. Biologic material composition and manufacturing methods may influence bacterial adherence.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

4

Opis fizyczny

p.409-414,fig.,ref.

Twórcy

autor
  • Department of Surgery, University of New Mexico, Albuquerque, USA
autor
  • Tulane University, New Orleans LA, USA

Bibliografia

  • An Y. and R. Friedman. 1998. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43: 338–348.
  • Aydinuraz K., C. Agalar, F. Agalar, S. Ceken, N. Duruyurek and T. Vural. 2009. In vitro S. epidermidis and S. aureus adherence to composite and lightweight polypropylene grafts. J. Surg. Res. 157: e79–86.
  • Badylak S., K. Kokini, B. Tullius and Whitson B. 2001. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J. Surg. Res. 99: 282–287.
  • Bellows C., A. Smith, J. Hodde and M. Hiles. 2011. Tissue engineering in abdominal wall surgery. Minerva Chir. 66: 129–143.
  • Bellows C., A.Smith, J. Malsbury and W. Helton. 2013 Repair of incisional hernias with biological prosthesis: a systematic review of current evidence. Am. J Surg. 205: 85–101.
  • Borazjani R. 2004. Relative primary adhesion of Pseudomonas aeruginosa, Serratia marcescens and Staphylococcus aureus to HEMA-type contact lenses and an extended wear silicone hydrogel contact lens of high oxygen permeability Cont. Lens Anterior Eye. 27: 3–8.
  • Brown B., C. Barnes, R. Kasick, R. Michel, T. Gilbert, D. Beer- Stolz, D. Castner, B. Ratner and S. Badylak. 2010. Surface characterization of extracellular matrix scaffolds. Biomaterials 31: 428–437.
  • Burger J., R. Luijendijk, W. Hop, J. Halm, E. Verdaasdonk and J. Jeekel. 2004. Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann. Surg. 240: 578–583.
  • Christensen G., W. Simpson, J. Younger, L. Baddour, F. Barrett, D. Melton and E. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996–1006.
  • Cornwell K., A. Landsman and K. James. 2009 Extracellular matrix biomaterials for soft tissue repair. Clin. Podiatr. Med. Surg. 26: 507–523.
  • Costerton J., L. Montanaro and C. Arciola. 2005. Biofilm in implant infections: its production and regulation. Int. J. Artif. Organs. 28: 1062–1068.
  • Costerton J., P. Stewart and E. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.
  • Craigen B., A.Dashiff and D. Kadouri. 2011. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol. J. 5: 21–31.
  • del Pozo J. and R. Patel. 2007. The challenge of treating biofilm-associated bacterial infections. Clin. Pharmacol. Ther. 82: 204–209.
  • Engelsman A., H. van der Mei, H. Busscher and R. Ploeg. 2008. Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br. J. Surg. 95: 1051–1059.
  • Engelsman A., H. Van der Mei, R. Ploeg and H. Busscher. 2007. The phenomenon of infection with abdominal wall reconstruction. Biomaterials 28: 2314–2327.
  • Falagas M. and S. Kasiakou. 2005. Mesh-related infections after hernia repair surgery. Clin. Microbiol. Infect. 11: 3–8.
  • Gilbert T., T. Sellaro and S. Badylak. 2006. Decellularization of tissues and organs. Biomaterials 27: 3675–3683.
  • Hall-Stoodley L. and P. Stoodley. 2005 Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13: 7–10.
  • Hall-Stoodley L.and P.Stoodley. 2009 Evolving concepts in biofilm infections. Cell. Microbiol. 11: 1034–1043.
  • Halaweish I., K. Harth, A.Broome, G. Voskerician, M. Jacobs and M. Rosen. 2010. Novel in vitro model for assessing susceptibility of synthetic hernia repair meshes to Staphylococcus aureus infection using green fluorescent protein-labeled bacteria and modern imaging techniques. Surg. Infect. (Larchmt) 11: 449–454.
  • Harth K. and M. Rosen. 2009. Major complications associated with xenograft biologic mesh implantation in abdominal wall reconstruction. Surg. Innov. 16: 324–329.
  • Henriques M., J. Azeredo J. and R. Oliveira. 2006. Candida albicans and Candida dubliniensis: comparison of biofilm formation in terms of biomass and activity. Br. J. Biomed. Sci. 63: 5–11.
  • Kloos W. and M. Musselwhite. 1975. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl. Microbiol. 30: 381–385.
  • Kobayashi H., M. Oethinger, M. Tuohy, G. Procop and T. Bauer. 2009. Improved detection of biofilm-formative bacteria by vortexing and sonication: a pilot study. Clin. Orthop. Relat. Res. 467: 1360–1364.
  • Luijendijk R., W. Hop, M. van den Tol, D. de Lange, M. Braaksma, J. IJzermans, R. Boelhouwer, B. de Vries, M. Salu, J. Wereldsma, C. Bruijninckx and J. Jeekel. 2000. A comparison of suture repair with mesh repair for incisional hernia. N. Engl. J. Med. 343: 392–398.
  • Mavros M., S. Athanasiou, V. Alexiou, P. Mitsikostas, G. Peppas and M. Falagas. 2011. Risk factors for mesh-related infections after hernia repair surgery: a meta-analysis of cohort studies. World J. Surg. 35: 2389–2398.
  • Stoodley P., S. Sidhu, L. Nistico, M. Mather, A. Boucek, L. Hall- Stoodley and S. Kathju. 2012. Kinetics and morphology of polymicrobial biofilm formation on polypropylene mesh. FEMS Immunol. Med. Microbiol. 65: 283–290.
  • Reinis A., M. Pilmane, A.Stunda, J. Vētra, J. Kroiča, D. Rostoka, G. Salms, A. Vostroilovs, A. Dons and L. Bērziņa-Cimdiņa. 2011. An in vitro and in vivo study on the intensity of adhesion and colonization by Staphylococcus epidermidis and Pseudomonas aeruginosa on originally synthesized biomaterials with different chemical composition and modified surfaces and their effect on expression of TNF-α, β-defensin 2 and IL-10 in tissues. Medicina (Kaunas), 45: 560–565.
  • Sule P., T. Wadhawan, N. Carr, S. Horne, A. Wolfe and B. Prüss. 2009. A combination of assays reveals biomass differences in biofilms formed by Escherichia coli mutants. Lett. Appl. Microbiol. 49, 299–304.
  • Zimmerli W., A.Trampuz and P. Ochsner. 2004. Prosthetic-joint infections. N. Engl. J. Med. 351: 1645–1654.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bd314892-61b6-4e1b-a477-cb61551d9468
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.