Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 1 |
Tytuł artykułu

Behavioral consequences of minimal traumatic brain injury in mice

Treść / Zawartość
Warianty tytułu
Języki publikacji
Victims of minor traumatic brain injury (mTBI), who show no clear morphological brain defects, frequently manifest cognitive, behavioral and emotional difficulties that can be long-lasting. In this paper we present a modified weight drop model used to deliver a closed head minimal traumatic brain injury to mice, which closely mimics real-life injuries and the symptoms observed in mTBI patients. Our choice of impact force does not produce structural damage to the brain and its surrounding tissue (as examined by MRI), any skull fracture, no edema and no evident damage to the blood-brain barrier (BBB). Moreover, our mTBI mice show no abnormal behavior on recovering from the weight drop, or any change in other brain functions such as reflexes, balance, exploration, strength, locomotor activity and swim speed. Since our mTBI model does not produce neurological, motor or sensory damage to the mice, it allows the direct evaluation of mTBI sequelae on the mice behavior and cognitive abilities. Using a variety of cognitive and behavioral tests (Morris water maze, staircase test, passive avoidance test, water T-maze, hot palate, elevated plus maze and forced swimming test) we assessed the short- and long-term sequelae induced by our model. Our results indicate that our closed head mTBI cause profound and long-lasting, irreversible learning and memory impairments, accompanied by a depressive-like behavior in mice that are evident even 90 days post injury. Our results indicate that the closed head mTBI model presented here may be useful in the development of novel therapeutic approaches, such as neuroprotective agents, for mTBI.
Słowa kluczowe
Opis fizyczny
  • Blanchette Rockefeller Neurosciences Institute, Johns Hopkins University Montgomery County Campus, Rockville, MD, USA
  • Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Tel Aviv Sourasky Medical Center, Department of Psychiatry, Tel Aviv, Israel
  • Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Abrous DN, Rodriguez J, le Moal M, Moser PC, Barneoud P (1999) Effects of mild traumatic brain injury on immunoreactivity for the inducible transcription factors c-Fos, c-Jun, JunB, and Krox-24 in cerebral regions associated with conditioned fear responding. Brain Res 826: 181­192.
  • Albensi BC (2001) Models of brain injury and alterations in synaptic plasticity. J Neurosci Res 65: 279-283.
  • Alcalay RN, Giladi E, Pick CG, Gozes I (2004) Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the ele­vated plus maze. Neurosci Lett 361: 128-131.
  • Arciniegas D, Adler L, Topkoff J, Cawthra E, Filley CM, Reite M (1999) Attention and memory dysfunction after traumatic brain injury: cholinergic mechanisms, sensory gating, and a hypothesis for further investigation. Brain Inj 13:1—13.
  • Assaf Y, Holokovsky A, Berman E, Shapira Y, Shohami E, Cohen Y (1999) Diffusion and perfusion magnetic reso­nance imaging following closed head injury in rats. J Neurotrauma 16: 1165-1176.
  • Badowska-Szalewska E, Klejbor I, Cecot T, Spodnik JH, Morys J (2009) Changes in NGF/c-Fos double staining in the structures of the limbic system in juvenile and aged rats exposed to forced swim test. Acta Neurobiol Exp (Wars) 69: 448-458.
  • Berger E, Leven F, Pirente N, Bouillon B, Neugebauer E (1999) Quality of life after traumatic brain injury: a sys­tematic review of the literature. Restor Neurol Neurosci 14: 93-102.
  • Cortez SC, McIntosh TK, Noble LJ (1989) Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res 482: 271-282.
  • Dixon CE, Lighthall JW, Anderson TE (1988) Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma 5:91-104.
  • Engelborghs K, Verlooy J, Van Reempts J, Van Deuren B, Van de Ven M, Borgers M (1998) Temporal changes in intracranial pressure in a modified experimental model of closed head injury. J Neurosurg 89: 796-806.
  • Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in trau­matic brain injury. Science 244: 798-800.
  • Finset A, Anke AW, Hofft E, Roaldsen KS, Pillgram-Larsen J, Stanghelle JK (1999) Cognitive performance in multi­ple trauma patients 3 years after injury. Psychosom Med 61: 576-583.
  • Graham DI, McIntosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59: 641-651.
  • Hamm RJ, Lyeth BG, Jenkins LW, O'Dell DM, Pike BR (1993) Selective cognitive impairment following trau­matic brain injury in rats. Behav Brain Res 59: 169-173.
  • Heinrichs SC, Stenzel-Poore MP, Gold LH, Battenberg E, Bloom FE, Koob GF, Vale WW, Pich EM (1996) Learning impairment in transgenic mice with central overexpression of corticotropin-releasing factor. Neuroscience 74: 303-311.
  • Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54: 21-30.
  • Hogg S, Moser PC, Sanger DJ (1998a) Mild traumatic lesion of the right parietal cortex of the rat: selective behavioural deficits in the absence of neurological impairment. Behav Brain Res 93:143-155.
  • Hogg S, Sanger DJ, Moser PC (1998b) Mild traumatic lesion of the right parietal cortex in the rat: characterisa­tion of a conditioned freezing deficit and its reversal by dizocilpine. Behav Brain Res 93:157-165.
  • Kibby MY, Long CJ (1996) Minor head injury: attempts at clarifying the confusion. Brain Inj 10: 159-186.
  • Laurer HL, McIntosh TK (1999) Experimental models of brain trauma. Curr Opin Neurol 12: 715-721.
  • Lehner M, Wislowska-Stanek A, Maciejak P, Szyndler J, Sobolewska A, Krzascik P, Plaznik A (2010) The relation­ship between pain sensitivity and conditioned fear response in rats. Acta Neurobiol Exp (Wars) 70: 56-66.
  • Levin HS, Mattis S, Ruff RM, Eisenberg HM, Marshall LF, Tabaddor K, High WM Jr., Frankowski RF (1987) Neurobehavioral outcome following minor head injury: a three-center study. J Neurosurg 66: 234-243.
  • Lighthall JW (1988) Controlled cortical impact: a new experimental brain injury model. J Neurotrauma 5: 1-15.
  • Lyeth BG, Liu S, Hamm RJ (1993) Combined scopolamine and morphine treatment of traumatic brain injury in the rat. Brain Res 617: 69-75.
  • Margulies S (2000) The postconcussion syndrome after mild head trauma: is brain damage overdiagnosed? Part 1. J Clin Neurosci 7: 400-408.
  • Milman A, Rosenberg A, Weizman R, Pick CG (2005) Mild traumatic brain injury induces persistent cognitive defi­cits and behavioral disturbances in mice. J Neurotrauma 22: 1003-1010.
  • Napieralski JA, Raghupathi R, McIntosh TK (1999) The tumor-suppressor gene, p53, is induced in injured brain regions following experimental traumatic brain injury. Brain Res Mol Brain Res 71: 78-86.
  • Pan W, Kastin AJ, Rigai T, McLay R, Pick CG (2003) Increased hippocampal uptake of tumor necrosis factor alpha and behavioral changes in mice. Exp Brain Res 149: 195-199.
  • Pick CG, Cheng J, Paul D, Pasternak GW (1991) Genetic influences in opioid analgesic sensitivity in mice. Brain Res 566: 295-298.
  • Pierce JE, Trojanowski JQ, Graham DI, Smith DH, McIntosh TK (1996) Immunohistochemical characterization of alterations in the distribution of amyloid precursor pro­teins and beta-amyloid peptide after experimental brain injury in the rat. J Neurosci 16: 1083-1090.
  • Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK (1998) Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neurosci 87: 359-369.
  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229: 327-336.
  • Rimel RW, Giordani B, Barth JT, Jane JA (1982) Moderate head injury: completing the clinical spectrum of brain trauma. Neurosurgery 11: 344-351.
  • Shapira Y, Setton D, Artru AA, Shohami E (1993) Blood- brain barrier permeability, cerebral edema, and neuro­logic function after closed head injury in rats. Anesth Analg 77: 141-148.
  • Smith DH, Nakamura M, McIntosh TK, Wang J, Rodriguez A, Chen XH, Raghupathi R, Saatman KE, Clemens J, Schmidt ML, Lee VM, Trojanowski JQ (1998) Brain trauma induces massive hippocampal neuron death linked to a surge in beta-amyloid levels in mice overexpressing mutant amyloid precursor protein. Am J Pathol 153: 1005-1010.
  • Strugar J, Sass KJ, Buchanan CP, Spencer DD, Lowe DK (1993) Long-term consequences of minimal brain injury: loss of consciousness does not predict memory impair­ment. J Trauma 34: 555-559.
  • Tashlykov V, Katz Y, Gazit V, Zohar O, Schreiber S, Pick CG (2007) Apoptotic changes in the cortex and hip­pocampus following minimal brain trauma in mice. Brain Res 1130: 197-205.
  • Tashlykov V, Katz Y, Volkov A, Gazit V, Schreiber S, Zohar O, Pick CG (2009) Minimal traumatic brain injury induce apoptotic cell death in mice. J Mol Neurosci 37: 16-24.
  • Tweedie D, Milman A, Holloway HW, Li Y, Harvey BK, Shen H, Pistell PJ, Lahiri DK, Hoffer BJ, Wang Y, Pick CG, Greig NH (2007) Apoptotic and behavioral sequelae of mild brain trauma in mice. J Neurosci Res 85: 805-815.
  • Ustun ME, Gurbilek M, Ak A, Vatansev H, Duman A (2001) Effects of magnesium sulfate on tissue lactate and malondialdehyde levels in experimental head trauma. Intensive Care Med 27: 264-268.
  • Waxweiler RJ, Thurman D, Sniezek J, Sosin D, O'Neil J (1995) Monitoring the impact of traumatic brain injury: a review and update. J Neurotrauma 12: 509-516.
  • Willner P (1990) Animal models of depression: an overview. Pharmacol Ther 45: 425-455.
  • Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, Faden AI (2001) Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 21: 7439-7446.
  • Zohar O, Schreiber S, Getslev V, Schwartz JP, Mullins PG, Pick CG (2003) Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience 118: 949-955.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.