PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 2 |

Tytuł artykułu

Male resource defence behaviour strengthens harem size in promiscuously mating fruit bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Mating success in group forming animals largely depend on the ability of same-sex competitors (usually males) to monopolize local resources that are spatially limited and are of importance to their sexual partners. Across taxa, this resource defence behaviour (RDB) is predicted to maximize male reproductive success. Although RDB is widely observed in polygynous societies, its significance as an alternative male mating strategy among randomly mating individuals (i.e., promiscuous) is a less explored topic in ethology, especially within Chiroptera. In this study, we elucidate the relationship between RDB (measured here as male tent defence behaviour) and the harem size associated with adult males of Cynopterus sphinx. From 12 independent resident male removal experiments, we found that inter-male aggressive combats often exclusively occur while defending foliage tents in mating seasons. Further, our harem census data of usurper males (during usurpation) and resident males (post release), suggests a significant bias among females to preferentially roost with the resident males. This preferential association between harem females and the resident males that almost always recovers the foliage tent from the usurpers, suggests that C. sphinx harem males use RDB as an alternative mating strategy to monopolize roosting resources and maintain large harems. However, further research is required to identify the direct effects of RDB on individual male reproductive success.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.329-336,fig.,ref.

Twórcy

  • School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
  • Department of Zoology, St. John's College, Palayamkottai, Tamil Nadu, India
  • School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia

Bibliografia

  • 1. Alcock, J., and T. F. Houston. 1987. Resource defense and alternative mating tactics in the Banksia bee, Hylaeus alcyoneus (Erichson). Ethology, 76: 177–188. Google Scholar
  • 2. Balasingh, J., J. Koilraj, and T. H. Kunz. 1995. Tent construction by the short-nosed fruit bat Cynopterus sphinx (Chiroptera, Pteropodidae) in Southern India. Ethology, 100: 210–229. Google Scholar
  • 3. Bhat, H. R., and T. H. Kunz. 1995. Altered flower fruit clusters of the kitul palm used as roosts by the short-nosed fruit bat, Cynopterus sphinx (Chiroptera, Pteropodidae). Journal of Zoology (London), 235: 597–604. Google Scholar
  • 4. Carey, P. W. 1991. Resource-defense polygyny and male territory quality in the New-Zealand fur-seal. Ethology, 88: 63–79. Google Scholar
  • 5. Cavigelli, S. A., and M. E. Pereira. 2000. Mating season aggression and fecal testosterone levels in male ring-tailed lemurs (Lemur catta). Hormones and Behavior, 37: 246–255. Google Scholar
  • 6. Christy, J. H. 1983. Female choice in the resource-defense mating system of the sand fiddler crab, Uca pugilator. Behavioral Ecology and Sociobiology, 12: 169–180. Google Scholar
  • 7. Desjardins, J. K., M. R. Hazelden, G. J. Van Der Kraak, and S. Balshine. 2006. Male and female cooperatively breeding fish provide support for the ‘challenge hypothesis’. Behavioral Ecology, 17: 149–154. Google Scholar
  • 8. Doss, D. P. S., V. Nagarajan-Radha, and S. Kandula. 2016. Daily and seasonal variation in non-acoustic communicative behaviors of male greater short-nosed fruit bats (Cynopterus sphinx). Acta Chiropterologica, 18: 199–207. Google Scholar
  • 9. Doutrelant, C., P. K. Mcgregor, and R. F. Oliveira. 2001. The effect of an audience on intrasexual communication in male Siamese fighting fish, Betta splendens. Behavioral Ecology, 12: 283–286. Google Scholar
  • 10. Emlen, S. T., and L. W. Oring. 1977. Ecology, sexual selection, and evolution of mating systems. Science, 197: 215–223. Google Scholar
  • 11. Fernandez, A. A., N. Fasel, M. Knornschild, and H. Richner. 2014. When bats are boxing: aggressive behaviour and communication in male Seba's short-tailed fruit bat. Animal Behaviour, 98: 149–156. Google Scholar
  • 12. Garg, K. M., B. Chattopadhyay, D. P. S. Doss, A. K. V. Kumar, S. Kandula, and U. Ramakrishnan. 2012. Promiscuous mating in the harem-roosting fruit bat, Cynopterus sphinx. Molecular Ecology, 21: 4093–4105. Google Scholar
  • 13. Günther, L., M. D. Lopez, M. Knörnschild, K. Reid, M. Nagy, and F. Mayer. 2016. From resource to female defence: the impact of roosting ecology on a bat's mating strategy. Royal Society Open Science, 3(11): 160503. Google Scholar
  • 14. Hasselquist, D., S. Bensch, and T. Vonschantz. 1995. Low-frequency of extrapair paternity in the polygynous great reed warbler, Acrocephalus arundinaceus. Behavioral Ecology, 6: 27–38. Google Scholar
  • 15. Heckel, G., and O. Von Helversen. 2002. Male tactics and reproductive success in the harem polygynous bat Saccopteryx bilineata. Behavioral Ecology, 13: 750–756. Google Scholar
  • 16. Heckel, G., C. C. Voigt, F. Mayer, and O. Von Helversen. 1999. Extra-harem paternity in the white-lined bat Saccopteryx bilineata (Emballonuridae). Behaviour, 136: 1173–1185. Google Scholar
  • 17. Hodgkison, R., S. T. Balding, A. Zubaid, and T. H. Kunz. 2003. Roosting ecology and social organization of the spottedwinged fruit bat, Balionycteris maculata (Chiroptera: Pteropodidae), in a Malaysian lowland dipterocarp forest. Journal of Tropical Ecology, 19: 667–676. Google Scholar
  • 18. Kerth, G. 2008. Causes and consequences of sociality in bats. Bioscience, 58: 737–746. Google Scholar
  • 19. Klukowski, M., and C. E. Nelson. 1998. The challenge hypothesis and seasonal changes in aggression and steroids in male northern fence lizards (Sceloporus undulatus hyacinthinus). Hormones and Behavior, 33: 197–204. Google Scholar
  • 20. Kunz, T. H., and G. F. Mccracken. 1996. Tents and harems: apparent defence of foliage roosts by tent-making bats. Journal of Tropical Ecology, 12: 121–137. Google Scholar
  • 21. Lehtonen, T. K., K. Lindstrom, and B. B. M. Wong. 2015. Body size mediates social and environmental effects on nest building behaviour in a fish with paternal care. Oecologia, 178: 699–706. Google Scholar
  • 22. Lindstrom, K. 1992. The effect of resource holding potential, nest size and information about resource quality on the outcome of intruder-owner conflicts in the sand goby. Behavioral Ecology and Sociobiology, 30: 53–58. Google Scholar
  • 23. Lindstrom, K., and T. K. Lehtonen. 2013. Mate sampling and choosiness in the sand goby. Proceedings of the Royal Society, 280(1765): 20130983. Google Scholar
  • 24. Lindstrom, K., and C. Pampoulie. 2005. Effects of resource holding potential and resource value on tenure at nest sites in sand gobies. Behavioral Ecology, 16: 70–74. Google Scholar
  • 25. Lundberg, K., and R. Gerell. 1986. Territorial advertisement and mate attraction in the bat Pipistrellus pipistrellus. Ethology, 71: 115–124. Google Scholar
  • 26. Marimuthu, G., K. E. Rajan, A. J. Koilraj, S. S. Isaac, and J. Balasingh. 1998. Observations on the foraging behavior of a tent roosting megachiropteran bat Cynopterus sphinx. Bio tropica, 30: 321–324. Google Scholar
  • 27. Marino, A., and R. Baldi. 2014. Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco. PLoS ONE, 9: e89060. Google Scholar
  • 28. Mertl-Millhollen, A. S. 2006. Scent marking as resource defense by female Lemur catta. American Journal of Primatology, 68: 605–621. Google Scholar
  • 29. Milks, M., and J. Picman. 1994. Which characteristics might selection favor as cues of female choice of mate in red- winged blackbirds. Canadian Journal of Zoology, 72: 1616–1624. Google Scholar
  • 30. Morrison, D. W. 1979. Apparent male defense of tree hollows in the fruit bat, Artibeus jamaicensis. Journal of Mammalogy, 60: 11–15. Google Scholar
  • 31. Muniz, D. G., and G. Machado. 2015. Experimental limitation of oviposition sites affects the mating system of an arachnid with resource defence polygyny. Animal Behaviour, 109: 23–31. Google Scholar
  • 32. Myhre, L. C., E. Forsgren, and T. Amundsen. 2013. Effects of habitat complexity on mating behavior and mating success in a marine fish. Behavioral Ecology, 24: 553–563. Google Scholar
  • 33. Newbolt, C. H., P. K. Acker, T. J. Neuman, S. I. Hoffman, S. S. Ditchkoff, and T. D. Steury. 2017. Factors influencing reproductive success in male white-tailed deer. Journal of Wildlife Management, 81: 206–217. Google Scholar
  • 34. Ortega, J., and H. T. Arita. 2000. Defence of females by dominant males of Artibeus jamaicensis (Chiroptera: Phyllostomidae). Ethology, 106: 395–407. Google Scholar
  • 35. Ortega, J., and H. T. Arita. 2002. Subordinate males in harem groups of Jamaican fruit-eating bats (Artibeus jamaicensis): satellites or sneaks? Ethology, 108: 1077–1091. Google Scholar
  • 36. Ostfeld, R. S. 1987. On the distinction between female defense and resource defense polygyny. Oikos, 48: 238–240. Google Scholar
  • 37. R CORE TEAM. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org. Google Scholar
  • 38. Sandhu, S., and A. Gopalakrishna. 1984. Some observations on the breeding biology of the Indian fruit bat, Cynopterus sphinx (Vahl) in Central India. Current Science, 53: 1189–1192. Google Scholar
  • 39. Scarry, C. J. 2012. Male resource defense in Argentine tufted capuchin monkeys (Cebus apella nigritus): consequences for intergroup dominance relationships and home range quality. American Journal of Physical Anthropology, 147: 259–260. Google Scholar
  • 40. Storz, J. F., J. Balasingh, P. T. Nathan, K. Emmanuel, and T. H. Kunz. 2000a. Dispersion and site fidelity in a tentroosting population of the short-nosed fruit bat (Cynopterus sphinx) in southern India. Journal of Tropical Ecology, 16: 117–131. Google Scholar
  • 41. Storz, J. F., H. R. Bhat, and T. H. Kunz. 2000b. Social structure of a polygynous tent-making bat, Cynopterus sphinx (Megachiroptera). Journal of Zoology (London), 251: 151–165. Google Scholar
  • 42. Storz, J. F., H. R. Bhat, and T. H. Kunz. 2001a. Genetic consequences of polygyny and social structure in an Indian fruit bat, Cynopterus sphinx. I. Inbreeding, outbreeding, and population subdivision. Evolution, 55: 1215–1223. Google Scholar
  • 43. Storz, J. F., H. R. Bhat, and T. H. Kunz. 2001b. Genetic consequences of polygyny and social structure in an Indian fruit bat, Cynopterus sphinx. II. Variance in male mating success and effective population size. Evolution, 55: 1224–1232. Google Scholar
  • 44. Sun, Y. H., C. Monagin, X. S. Liu, and J. P. Chen. 2012. A test for sex-biased dispersal in Cynopterus sphinx: inferences from microsatellite markers and mitochondrial DNA. Acta Chiropterologica, 14: 39–44. Google Scholar
  • 45. Voigt, C. C., and W. J. Streich. 2003. Queuing for harem access in colonies of the greater sac-winged bat. Animal Behaviour, 65: 149–156. Google Scholar
  • 46. Voigt, C. C., G. Heckel, and F. Mayer. 2005. Sexual selection favours small and symmetric males in the polygynous greater sac-winged bat Saccopteryx bilineata (Emballonuridae, Chiroptera). Behavioral Ecology and Sociobiology, 57: 457–464. Google Scholar
  • 47. Williams, C. F. 1986. Social organization of the bat, Carollia perspicillata (Chiroptera, Phyllostomidae). Ethology, 71: 265–282. Google Scholar
  • 48. Yasukawa, K. 1981. Male quality and female choice of mate in the red-winged blackbird (Agelaius phoeniceus). Ecology, 62: 922–929. Google Scholar
  • 49. Zhang, W., G. J. Zhu, L. J. Tan, J. Yang, Y. Chen, Q. Liu, Q. Q. Shen, J. P. Chen, and L. B. Zhang. 2014. Role of olfaction in the foraging behavior and trial-and-error learning in short-nosed fruit bat, Cynopterus sphinx. Behavioural Processes, 103: 23–27. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-bcc4d3af-9de1-4d79-a105-34c187358706
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.