Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Effects of iron-modified biochar and AMF inoculation on the growth and heavy metal uptake of Senna occidentalis in heavy metal-contaminated soil

Warianty tytułu
Języki publikacji
S. occidentalis can be used in pharmacology and vegetation restoration. A pot experiment was conducted to study the effects of biochar and mycorrhizal fungus inoculation on plant growth and heavy metal accumulation. The mycorrhizal infection rate was increased by apple branch biochar but decreased by coconut husk iron-modified biochar. Conversely, soil pH was not affected by mycorrhizal inoculation but was increased by biochar. Compared to the uninoculated control, the combination of apple branch biochar and mycorrhizal inoculation significantly increased the growth of stems, leaves and roots by 226.46%, 163.15% and 86.00%, respectively. The application of apple branch biochar increased the root Pb content, while root Cd, Cr, Cu and Fe were decreased by 36.30%, 13.63%, 3.09% and 7.66%, respectively. Furthermore, the content of all elements in the stems and leaves also decreased. The application of iron-modified biochar alone increased the content of all the elements in the roots by 4.23-109.33%. But their contents in stems and leaves were decreased by iron-modified biochar and mycorrhizal inoculation alone. The combination of biochar and mycorrhizal inoculation most effectively promoted plant growth, enhanced heavy metal uptake by the roots and produced a barrier effect that reduced the transfer of heavy metals from the roots to the shoots. This might constitute a feasible means of promoting the safe utilization of S. occidentalis in phytoremediation.
Słowa kluczowe
Opis fizyczny
  • Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, China
  • College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, China
  • College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, China
  • 1. SMITH S.E., READ D. Mycorrhizal Symbiosis[M]. San Diego: Academic Press, 148-158, 174-175, 403 182-186,2008.
  • 2. SARKAR A., ASAEDA T., WANG Q., RASHID M.H. Arbuscular mycorrhizal influences on growth, nutrient uptake, and use efficiency of Miscanthus sacchariflorus growing on nutrient-deficient river bank soil. Flora, 212, 46, 2015.
  • 3. HOUBEN D., SONNET P., CORNELIS J. Biochar from Miscanthus: a potential silicon fertilizer. PLANT AND SOIL, 374 (1-2), 871, 2014.
  • 4. PUGA A.P., ABREU C.A., MELO L.C.A., BEESLEY L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manag, 159, 86, 2015.
  • 5. JONES D.L., EDWARDS-JONES G., MURPHY D.V. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology & Biochemistry, 43, 804, 2011.
  • 6. SINGH A., SINGH A.P., SINGH S.K., RAI S., KUMAR D. Impact of addition of biochar along with pgpr on rice yield, availability of nutrients and their uptake in alluvialsoil. Journal of Pure & Applied Microbiology, 10 (3), 2181, 2016.
  • 7. WARNOCK D.D., LEHMANN J., KUYPER T.W., RILLIG M.C. Mycorrhizal responses to biochar in soil-concepts and mechanisms. PLANT AND SOIL, 300 (1-2), 9, 2007.
  • 8. YAO Y., GAO B., INYANG M., ZIMMERMAN A.R., CAO X., PULLAMMANAPPALLIL P., YANG L. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 102, 6273, 2011.
  • 9. AGRAFIOTI E., KALDERIS D., DIAMADOPOULOS E. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. Journal of Environmental Management, 146, 444, 2014.
  • 10. YADAV J.P., ARYA V., YADAV S., PANGHAL M., KUMAR S., DHANKHAR S. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia, 81, 223, 2010.
  • 11. LOVE A., BANERJEE B.D., BABU C.R. Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin. Environmental Monitoring and Assessment, 185, 6553, 2013.
  • 12. PHILLIPS J.M., HAYMAN D.S. Improved procedures for clearing roots and staining parasitic and vesiculararbuscular mycorrhizal fungi for rapid assessment of infection [J].Transactions British Mycological Society, 55, 158, 1970.
  • 13. BIERMANN B., LINDERMAN R.G. Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization. New Phytologist, 87 (1), 63, 1981.
  • 14. State Environmental Protection Administration of China (SEPAC). The Technical Specification for Soil Environmental Monitoring; HJ/T 166-2004; Environmental Press of China: Beijing, China, 2004 [In Chinese].
  • 15. ELMER W.H., PIGNATELLO J.J. Effect of Biochar Amendments on Mycorrhizal Associations and Fusarium Crown and Root Rot of Asparagus in Replant Soils[J]. Plant Disease, 95 (95), 960, 2011.
  • 16. HAN Y., JR D.D.D., BOATENG A.A. Effect of Biochar Soil-Amendments on Allium porrum Growth and Arbuscular Mycorrhizal Fungus Colonization[J]. Journal of Plant Nutrition, 39 (11), 00-00, 2015.
  • 17. JAAFAR N.M. Biochar as a Habitat for Arbuscular Mycorrhizal Fungi[M]//Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Springer Berlin Heidelberg, 297, 2014.
  • 18. MEIER S., CURAQUEO G., KHAN N., BOLAN N., RILLING J., VIDAL C., FERNÁNDEZ N.,ACUÑA J., GONZÁLEZ M.E., CORNEJO P., BORIE F. Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. Journal of Soils & Sediments, 17 (5), 1237, 2015.
  • 19. HAN Y.JR., DOUDS D.D., BOATENG A.A. Effect of biochar soil-amendments on Allium porrum growth and arbuscular mycorrhizal fungus colonization. JOURNAL OF PLANT NUTRITION, 39 (11), 1654, 2016.
  • 20. FELLET G., MARCHIOL L., DELLE VEDOVE G., PERESSOTTI A. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 83, 1262, 2011.
  • 21. SHI R.Y., HONG Z.N., LI J.Y., JIANG J., KAMRAN M.A., XU R.K., QIAN W. Peanut straw biochar increases the resistance of two ultisols derived from different parent materials to acidification: a mechanism study. Journal of Environmental Management, 210, 171, 2018.
  • 22. DAI Z., WANG Y., MUHAMMAD N., YU X., XIAO K., MENG J., LIU X., XU J.,BROOKES P. The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH. Soil Science Society of America Journal, 78 (5), 1606, 2014.
  • 23. SCHNEIDER K.D., LYNCH D.H., DUNFIELD K., KHOSLA K., JANSA J., VORONEY R.P. Farm system management affects community structure of arbuscular mycorrhizal fungi. Applied Soil Ecology, 96, 192, 2015.
  • 24. BAGYARAJ D.J., SHARMA M.P., MAITI D. Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Current Science, 108 (7), 1288, 2015.
  • 25. LU K., YANG X., SHEN J., ROBINSON B., HUANG H., LIU D., BOLAN N., PEI J., WANG H. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture Ecosystems & Environment, 191, 124, 2014.
  • 26. ZHU Q., WU J., WANG L., YANG G., ZHANG X. Effect of Biochar on Heavy Metal Speciation of Paddy Soil. Water Air and Soil Pollution, 226 (12, 1, 2015.
  • 27. Al-Wabel M.I., Usman A.R., El-Naggar A.H., Aly A.A., Ibrahim H.M., Elmaghraby S., Al- Omran A. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J Biol Sci, 22 (4), 503, 2015.
  • 28. HOUBEN D., SONNET P., CORNELIS J. Biochar from Miscanthus: a potential silicon fertilizer. PLANT AND SOIL, 374 (1-2), 871, 2014.
  • 29. PUGA A.P., ABREU C.A., MELO L.C.A., PAZ-FERREIRO J., BEESLEY L. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 22 (22), 17606, 2015.
  • 30. HOUBEN D., EVRARD L., SONNET P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.).Biomass Bioenerg, 57 (11), 196, 2013.
  • 31. HOUBEN D., EVRARD L., SONNET P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. CHEMOSPHERE, 92 (11), 1450, 2013.
  • 32. REDON P., BEGUIRISTAIN T., LEYVAL C. Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza, 19 (3), 187, 2009.
  • 33. JONER E.J., BRIONES R., LEYVAL C. Metal-binding capacity of arbuscular mycorrhizal mycelium, 226(2), 227, 2000.
  • 34. GONZALEZ-CHAVEZ C., D’HAEN J., VANGRONSVELD J., DODD J.C. Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant and Soil, 240, 287, 2002.
  • 35. KIM H., KIM K., YOON J., YANG J.E., OK Y.S., OWENS G., KIM K. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. ENVIRONMENTAL EARTH SCIENCES, 74 (2), 1249, 2015.
  • 36. BISSONNETTE L., ST-ARNAUD M., LABRECQUE M. Phytoextraction of heavy metals by two Salicaceae clonesin symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant and Soil, 332, 55, 2010.
  • 37. LINS, C, CAVALCANTE U., SAMPAIO E., MESSIAS A.S., MAIA L.C. Growth of mycorrhized seedlings of Leucaena leucocephala (Lam.) de Wit. in a copper contaminated soil. Applied Soil Ecology, 31, 181, 2006.
  • 38. LIN A., ZHANG X., WONG M., YE Z., LOU L., WANG Y., ZHU Y. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environmental Geochemistry and Health, 29, 473, 2007.
  • 39. CHEN B.D., ZHUY., DUAN J., XIAO X.Y., SMITH S.E. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 147, 374, 2007.
  • 40. CHEN B.D., XIAO X., ZHU Y., SMITH F.A., XIE Z.M., SMITH S.E. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379, 226, 2007.
  • 41. QIAO Y., CROWLEY D., WANG K., ZHANG H., LI H. Effects of biochar and arbuscular mycorrhizae, on bioavailability of potentially toxic elements in an aged contaminated soil. Environmental Pollution, 206, 636, 2015.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.