EN
Abstract: Currently, one of the challenging tasks for Chinese engineering community is to construct a water-way crossing of Qiongzhou Strait in the south of China. This project has also gained significant attention from researchers in academia. The study presented herein is centered on providing a feasible solution for ac-complishing the above mentioned task. Initially, different alternatives as the best location, judged on the basis of the environmental constraints, are studied. Then the comparison between various structural solutions such as suspension bridge, submarine tunnel and SFT is presented. Among these solutions, SFT appears to be a very suitable alternative for Qiongzhou Strait waterway crossing due to distinctive advantages, like shorter distance, lower cost, less impact on environment and navigation, etc. Based on the appropriate conception for cross sections, support systems, materials, joints and connection schemes, a numerical model is developed by means of the FEM software ANSYS/Fluent. It is then analyzed under the influence of different environmental loading conditions, varying the wave heights and lengths, current velocities and water depths, which are typical in Qiongzhou Strait. The numerical results reveal that the proposed SFT solution performs safely even under extreme weather conditions