PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 2 |

Tytuł artykułu

Effects of different types of mycorrhiza on the development and the elemental content of lupin (Lupinus albus L.)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of different types of arbuscular mycorrhizal (AM) fungi on the root inoculation and plant elemental content of lupin (Lupinus albus L.) were investigated in the present study. The growth and development of lupin were examined to determine the species of AM fungi that can help to grow lupin with a high protein content and economic value. In this study, which was carried out as a pot experiment under controlled greenhouse conditions, first the pots were inoculated with Glomus geosporum, Glomus mosseae, Glomus caledonium, Glomus etunicatium mycorrhizal spores and then lupin (Lupinus albus) seeds were sown. The plants were watered with pure water during the experiment. The trial was terminated after a 60-day plant gowing period. In the study, inoculation occurred at lupin roots at rates varying between 13.3 and 30.0%. However, there was no statistically significant difference among the types of arbuscular mycorrhizal fungi applied to the plant in the inoculation rate. The examination of the effect of the application of different AM (Glomus geosporum, Glomus mosseae, Glomus caledonium, Glomus etunicatium) spore on the plant development showed that AM inoculation did not have an effect on the lupin development. The effect of AM inoculation on the plant’s nutrient content revealed no significant difference in the content of crude protein, P and K, while demonstrating a significant increase in the sulphur and magnesium content versus the control. The plant content of crude protein varied between 185.6 and 226.5 (g kg-1), phosphorus – 0.61-0.74 (g kg-1) and potassium – 9.6-11.1 (g kg-1). The concentrations of Zn, Cu, B and Mo in lupin did not show statistically significant modifications caused by the inoculation of different types of AM. However, the plant Mn content showed a decrease due to AM inoculation, whereas a significant increase was observed in the Na content after AM inoculation. AM fungi were observed in plant roots after the inoculation with any of the four different types of mycorrhiza. But no positive effects of mycorrhizal inoculation were not observed on crude protein and the uptake of plant nutrients.

Wydawca

-

Rocznik

Tom

21

Numer

2

Opis fizyczny

p.327-335,ref.

Twórcy

autor
  • Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Turkey
  • Department of Field Crops, Selcuk University, Konya, Turkey
autor
  • Department of Field Crops, Selcuk University, Konya, Turkey

Bibliografia

  • Akiyama K., Hayashi H. 2006. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann. Bot., 97: 925-931.
  • Avio L., Sbrana C., Giovannetti M. 1990. The response of different species of Lupinus to VAM endophytes. Symbiosis, 9: 321-323.
  • Bayrakli F. 1986. Soil and plant analysis. Ondokuz Mayis Univ. Agricultural Fac. Publications Number 17, Erzurum. (in Turkish)
  • Bremner J.M. 1965. Total nitrogen. Agronomy, 9: 1149-78.
  • Chamberlain G.T., Searle A.J. 1963. Trace elements in some East African soils and plants. II. Manganese. East Afr. Agric. For. J., 29: 114-119.
  • Ciesiołka D., Muzqüiz M., Burbano C., Pedrosa M.M., Wysocki W., Gulewicz K. 2007. Relation between nitrogen form and development and yielding of Lupinus albus L. originated from different countries. Span. J. Agric. Res., 5: 226-231.
  • Giovanetti M., Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol., 84: 489-500.
  • Giovannetti M., Avio L., Sbrana C., Citernesi A.S. 1993. Factors affecting appressorium development in the vesicular arbuscular mycorrhizal fungus Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe. New Phytol., 123: l14-122.
  • Giovannetti M., Sbrana C., Logi C. 1994. Early process involved in host recognition by arbuscular mycorrhizal fungi. New Phytol., 127: 703-709.
  • Gladstones J.S. 1962. The mineral composition of lupins 2. A comparison of the copper, manganese, molybdenum and cobalt contents of lupins and other species at one site. Aust. J. Exp. Agric. Anita. Husbandry, 2: 213-220.
  • Gladstones J.S., Drover D.P. 1962. The mineral composition of lupins 1. A survey of the copper, molybdenum and manganese contents of lupins in the south west of Western Australia. Aust. J. Exp. Agric. Anim. Husbandry, 2: 46-53.
  • Hayman D.S. 1982. The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can. J. Bot., 61: 944-963.
  • He X. 1998. Mineralization and bioavailability of phosphorus bound to soil organic matter by enzymes from Lupinus albus. PhD thesis. Univ. of Wisconsin-Madison, 145 p.
  • Helmke P., Thomas A., Boerth J., Xiaodun H. 2000. Bioavailability of organically-bound soil phosphorus. http://www.findthatdoc.com/search-28832064-hPDF/download-docu-ments-1-helmke-pdf.htm
  • Hocking P.J., Pate J.S. 1978. Phloem and xylem transport in the supply of minerals to a developing legume(Lupinus albus L.) fruit. Ann. Bot., 42(4): 911-921.
  • Jones F.R. 1924. A mycorrhizal fungus in the roots of legumes and some other plants. J Agric Res., 29: 459-470.
  • Koch M., Tanami Z., Bodani H., Winnger S. 1997. Field application of vesicular arbuscular mycorrhizal fungi improved garlic yield in disinfected soil. Mycorrhiza, 7: 47-50.
  • Koskę R.E., Gemma J.N. 1989. A modified procedure for staining roots to detect VAM. Mycol. Res., 92: 486-505.
  • Lane G.A., Sutherland O.R.W., Skipp R.A. 1987. Isoflavonoids as insect feding deterrents and antifungal components from root of Lupinus angustifolius. J. Chem. Ecol., 13: 771-783.
  • Marschner H. 1998. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res., 56: 203-207.
  • Morley C.D., Mosse B. 1976. Abnormal vesicular-arbuscular mvcorrhizal infections in white clover induced by lupin. Trans. Brit. Mycol. Soc., 67: 510-513.
  • Mosse B. 1973. Advanges in the study of vesicular-arbuscular mycorrhiza. Ann. Rev. Phytopathol., 11: 171-195.
  • Ready P.F., Waugh c. 1981. Mineral-element composition of lupinus albus and lupinus angustifolius in relation to manganese accumulation .Plant Soil., 60: 435-444.
  • Reay, P.F. 1987. The distribution of nine elements in shoots of Lupinus albus L. and Lupinus angustifolius L. compared with that of silicon as a measure of passive transport. Ann. Bot., 59: 219-225.
  • Schlicht A. 1889. Beitrag zur Kenntniss der Verbreitung und Bedeutung der Mycorhizen. Landwirtschaftliche Jahrb_cher, 18: 478-506.
  • Smith S.E., Jakobsen I., Grønland M., Smith F.A. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plantphosphorus acquisition. Plant Physiol., 156: 1050-1057.
  • Subramanian K.S., Charest C. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasseling. Mycorrhiza, 7: 25-32.
  • Sylvia D.M., Hammond L.C., Bennet J.M., Has J.H., Linda S.B. 1993. Field response of maize to VAM fungus and water management. Agron. J., 85: 193-198.
  • Tarafdar J.c., Marschner H. 1994. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Bio-chem., 26: 387-395.
  • Trinick M.J. 1977. Vesicular-arbuscular infection and soil phosphorus utilization in Lupinus spp. New Phytol., 78: 297-304.
  • Yorgancilar M., Bilgiqli N. 2014. Chemical and nutritional changes in bitter and sweet lupin seeds (Lupinus albus L.) during bulgurproduction. J. Food Sci. Technol., 51(7): 1384-1389.
  • Yorgancilar M., Atalay E., Babaoglu m. 2009. Mineral content of debittered white lupin (Lupinus albus L.) seeds. Selcuk Univ. Selęuk J. Agric. Food Sci., 23(50): 10-15.(in Turkish)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bcae45ae-5591-481d-92d4-18013e52c6dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.