PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 2 |

Tytuł artykułu

Clustering behavior in wintering greater mouse-eared bats Myotis myotis — the Effect of micro-environmental conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
During monthly bat surveys carried out in winters of 2008/2009 and 2009/2010 we studied clustering behavior of greater mouseeared bats (Myotis myotis) hibernating in the Międzyrzecz Fortified Front (MFF) in western Poland. Since the behavior of hibernating bats is usually affected by varying environmental conditions we measured changes in the ambient temperature (Ta and water vapor pressure (WVP) and their variability in the selected areas and analyzed the relationship between clustering behavior of hibernating bats and abiotic conditions. In both winters, the number of solitarily roosting individuals of M. myotis decreased from autumn to spring while the highest number of bats hibernating in clusters was recorded in the middle of winter. The number of clusters did not change significantly over the winter, but the number of individuals within a particular cluster increased from November (median = 5, inter-quartile range, IQR = 5-8) to March (median = 20, IQR = 14-35.5). The changes of the clusters' size were best explained by a mixed model with WVP and the variability in WVP over the 20 days prior to the bat survey as explanatory variables. As WVP and the variability in WVP decreased, the number of individuals in a cluster increased. Also, Ta affected the size of clusters. However, neither of the models supported the hypothesis of the effect of variability of Ta on clustering of M. myotis. We propose that huddling enables bats to reduce evaporative water loss during the middle and at the end of the hibernation and reduces costs of spring arousals, perhaps by synchronizing them between clustered individuals and thus allowing the use of passive re-warming.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

2

Opis fizyczny

p.417-424,ref.

Twórcy

  • Department of Paleozoology, Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, PL-00-679 Warszawa, Poland
autor
  • Ansee Consulting, Przemysłowa 21/1, 52-333 Wrocław, Poland
  • Department of Vertebrate Ecology and Paleontology, Institute of Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
  • Institute of Zoology, Faculty of Animal Breeding and Biology, Poznan University of Life Science, Wojska Polskiego 71c, 60-625 Poznań, Poland
  • Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland

Bibliografia

  • 1. J. D. Altringham 2011. Bats: from evolution to conservation. Oxford University Press, Oxford, 324 pp. Google Scholar
  • 2. W. Arnold 1993. Energetics of social hibernation. Pp. 65–80, in Life in the cold. Ecological, physiological, and molecular mechanisms ( C. Carey , G. L. Florant , B. A. Wunder , and B. Horowitz , eds.). West View Press, Inc., Boulder, CO, 575 pp. Google Scholar
  • 3. W. Bogdanowicz 1983. Community structure and interspecific interactions in bats hibernating in Poznań. Acta Theriologica, 28: 357–370. Google Scholar
  • 4. J. G. Boyles , and V. Brack Jr . 2009. Modeling survival rates of hibernating mammals with individual-based models of energy expenditure. Journal of Mammalogy, 90: 9–16. Google Scholar
  • 5. J. G. Boyles , M. B. Dunbar , J. J. Storm , and V. Brack Jr . 2007. Energy availability influences microclimate selection of hibernating bats. Journal of Experimental Biology, 210: 4345–4350. Google Scholar
  • 6. J. G. Boyles , J. J. Storm , and V. Brack Jr . 2008. Thermal benefits of clustering during hibernation: a field test of competing hypotheses on Myotis sodalis. Functional Ecology, 22: 632–636. Google Scholar
  • 7. C. R. Brown 1999. Metabolism and thermoregulation of individual and clustered long-fingered bats, Miniopterus schrebersii, and the implications for rusting. South African Journal of Zoology, 34: 166–172. Google Scholar
  • 8. K. P. Burnham , D. R. Anderson , and K. P. Huyvaert . 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations and comparisons. Behavioral Ecology and Sociobiology, 65: 23–35. Google Scholar
  • 9. M. Canals 1998. Thermal energetic of small animals. Biological Research, 31: 367–374. Google Scholar
  • 10. R. L. Clawson , R. K. Laval , M. L. Laval , and W. Caire . 1980. Clustering behavior of hibernating Myotis sodalis in Missouri. Journal of Mammalogy, 61: 245–253. Google Scholar
  • 11. C. Dietz , and O. Von Helversen . 2004. Illustrated identification key to the bats of Europe. Electronic publication, version 1.0. Available from http://biocenosi.dipbsf.uninsubria. it/didattica/bat_key1.pdf. Google Scholar
  • 12. M. B. Dunbar , and T. E. Tomasi . 2006. Arousal pattern, metabolic rates, and an energy budget of eastern red bats (Lasiurus borealis) in winter. Journal of Mammalogy, 87: 1096–1102. Google Scholar
  • 13. J. Gaisler 1970. Remarks on the thermopreferendum of Palearctic bats in their natural habitats. Bijdragen tot de Dierkunde, 40: 33–36. Google Scholar
  • 14. f. Geiser 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Reviews of Physiology, 66: 239–274. Google Scholar
  • 15. C. Gilbert , D. McCafferty , I. Le Maho , J. M. Martrette , S. Giroud , S. Blanc , and A. Ancel . 2010. One for all and all for one: the energetic benefit of huddling in endotherms. Biological Reviews of the Cambridge Philosophical Society, 85: 545–569. Google Scholar
  • 16. Iups Thermal Commission. 2003. Glossary of terms for thermal physiology. Journal of Thermal Biology, 28: 75–106. Google Scholar
  • 17. W. Harmata 1969. The thermopreferendum of some species of bats (Chiroptera). Acta Theriologica, 14: 49–62. Google Scholar
  • 18. W. Harmata 1973. The thermopreferendum of some species of bats (Chiroptera) in natural conditions. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, 332, Prace Zoologiczne, 19: 127–141. Google Scholar
  • 19. R. J. Hock 1951. The metabolic rates and body temperature of bats. Biological Bulletin, 101: 289–299. Google Scholar
  • 20. M. Jefimow , M. Głbska , and M. S. Wojciechowski . 2011. Social thermoregulation and torpor in Siberian hamster. Journal of Experimental Biology, 214: 1100–1108. Google Scholar
  • 21. R. M. Jurga , and A. M. Kędryna . 2000. Festungsfront OderWarthe-Bogen. Donjon, Boryszyn, 180 pp. Google Scholar
  • 22. T. Kokurewicz 2004. Sex and age related habitat selection and mass dynamics of Daubenton's bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropterologica, 6: 121–144. Google Scholar
  • 23. T. Kokurewicz , and J. R. Speakman . 2006. Age related variation in energy costs of torpor in Daubenton's bat: effects on fat accumulation prior to hibernation. Acta Chiropterologica, 8: 508–521. Google Scholar
  • 24. P. Koteja , M. Jurczyszyn , and B. Wołoszyn . 2001. Energy balance of hibernating mouse-eared bat Myotis myotis: a study with a TOBEC instrument. Acta Theriologica, 46: 1–12. Google Scholar
  • 25. A. Krzanowski 1961. Weight dynamics of bats wintering in the cave at Pulawy (Poland). Acta Theriologica, 4: 249–264. Google Scholar
  • 26. T. H. Kunz , J. A. Wrazen , and C. D. Burnett . 1998. Changes in body mass and fat reserves in pre-hibernating little brown bat (Myotis lucifugus). Ecoscience, 5: 8–17. Google Scholar
  • 27. J. M. Lorch , C. U. Meteyer , M. J. Behr , J. G. Boyles , P. M. Cryan , A. C. Hicks , A. E. Ballmann , J. T. H. Coleman , D. N. Redell , D. M. Reeder , and D. S. Blehert . 2011. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature, 480: 376–378. Google Scholar
  • 28. C. P. Lyman , J. S. Willis , A. Malan , and L. H. C. Wang . 1982. Hibernation and torpor in mammals and birds. Academic Press, New York, 317 pp. Google Scholar
  • 29. F. W. Murray 1967. On the computation of saturation vapor pressure, Journal of Applied Meteorology, 6: 203–204. Google Scholar
  • 30. J. W. Procter , and E. H. Studier . 1970. Effects of ambient temperature and water vapor pressure on evaporative water loss in Myotis lucifugus. Journal of Mammalogy, 51: 799–804. Google Scholar
  • 31. S. J. Puechmaille , G. Wlbbelt , V. Korn , H. Fuller , F. Forget , K. Mühldorfer , A. Kurth , W. Bogdanowicz , C. BoRel , T. Bosch , et al. 2011. Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLoS ONE 6(4): el9167. doi:10.1371/journal.pone. 0019167. Google Scholar
  • 32. R Development Core Team . 2011. The R project for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org . Google Scholar
  • 33. L. Rodrigues , A. Zahn , A. Rainho , and J. M. Palmeirim . 2003. Contrasting the roost behaviour and phenology of an insectivorous bat (Myotis myotis) in its southern and northern distribution ranges. Mammalia, 67: 321–335. Google Scholar
  • 34. R. C. Roverud , and M. A. Chappell . 1991. Energetic and thermoregulatory aspects of clustering behavior in the Neotropical bat Noctilio albiventris. Physiological Zoology, 64: 1521–1541. Google Scholar
  • 35. P. Stapp , P. J. Pelins , and W. W. Mautz . 1991. Winter energyexpenditure and the distribution of southern flying squirrels. Canadian Journal of Zoology, 2548–2555. Google Scholar
  • 36. E. H. Studier 1970. Evaporative water loss in bats. Comparative Biochemistry and Physiology, 35: 935–943. Google Scholar
  • 37. D. W. Thomas , and D. Cloutier . 1992. Evaporative water by hibernating little brown bats, Myotis lucifugus. Physiological Zoology, 65: 443–456. Google Scholar
  • 38. D. W. Thomas , and F. Geiser . 1997. Periodic arousals in hibernating mammals: is evaporative water loss involved? Functional Ecology, 11: 585–591. Google Scholar
  • 39. D. W. Thomas , M. Dorais , and J. M. Bergeron . 1990. Winter energy budgets and costs of arousals from hibernating little brown bats, Myotis lucifugus. Jourmal of Mammalogy, 71: 475–479. Google Scholar
  • 40. Z. Urbańczyk 1991. Hibernation of Myotis daubentonii and Barbastella barbastellus in Nietoperek Bat Reserve. Myotis, 29: 115–120. Google Scholar
  • 41. N. Valenciuc 1989. Dynamic of movements of bats in some shelters. Pp. 511–517, in European bat research 1987 ( V. Hanák , I. Horáček , and J. Gaisler , eds.). Charles University Press, Praha, 718 pp. Google Scholar
  • 42. P. I. Webb , J. R. Speakman , and P. A. Racey . 1996. How hot is hibernaculum? A review of the temperatures at which bats hibernate? Canadian Journal of Zoology, 74: 761–765. Google Scholar
  • 43. G. Wibbelt , A. Kurth , D. Hellmann , M. Weishaar , A. Barlow , M. Veith , J. PrüGer , T. GörföL , L. Grosche , F. Bontadina , U. Zöphel , H. P. Seidl , P. M. Cryan , and D. S. Blehert . 2010. White-nose syndrome fungus (Geomyces destructans) in bats, Europe. Emerging Infectious Diseases, 16: 1237–1242. Google Scholar
  • 44. C. K. R. Willis , A. K. Menzies , J. G. Boyles , and M. S. Wojciechowski . 2011. Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome. Integrative and Comparative Biology, 51: 364–373 Google Scholar
  • 45. P. C. Withers , and J. U. M. JARVIS . 1980. The effect of huddling on thermoregulation and oxygen consumption for the naked mole-rat. Comparative Biochemistry and Physiology, 66A: 215–219. Google Scholar
  • 46. M. S. Wojciechowski , M. Jefimow , and E. TęGowska . 2007. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comparative Biochemistry and Physiology, 147A: 828–840. Google Scholar
  • 47. M. S. Wojciechowski , M. Jefimow , and B. Pinshow . 2011. Heterothermy, and the energetic consequences of huddling in small migrating passerine birds. Integrative and Comparative Biology, 51: 409–418. Google Scholar
  • 48. C. Woźniak 1996. History and architecture of the undergrounds of the Międzyrzecki Rejon Umocniony. Pp. 78–113, in The nature of the Gorzów Voyvodeship. Bat reserve ‘Nietoperek’ ( T. Kokurewicz , ed.). Voyvodeship Fund for Environment Protection and Water Management, Gorzów Wielkopolski, Poland, 195 pp. Google Scholar
  • 49. S. Yahav , and R. Buffenstein . 1991. Huddling behavior facilitates homeothermy in the naked mole rat Heterocephalus glaber. Physiological Zoology, 64: 871–84. Google Scholar
  • 50. J. Zukal , H. BerkovÁ , and Z. Řehák . 2005. Activity and shelter selection by Myotis myotis and Rhinolophus hipposideros hibernating in the Kateřinská cave (Czech Republic). Mammalian Biology, 70: 271–281. Google Scholar

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bc9553c4-6188-4455-ac10-d2cc59669a3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.