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A b s t r a c t. Geospatial variations in barley production due to 
climate change were evaluated for different geographic regions of 
South Korea over the next hundred years under the climate change 
scenarios of representative concentration pathways 4.5 and 8.5. 
We employed a geospatial crop simulation modelling strategy 
based on the CERES-barley model in the DSSAT crop model 
package version 4.6 to simulate grid-based geospatial variation 
in barley yield. An open field experiment and a temperature gra-
dient field chamber experiment were performed to obtain model 
coefficients for South Korea and to assess the performance of 
CERES-barley under elevated temperature conditions. Projected 
barley yield data were further used to establish a new landscape 
classification system to provide agricultural policymakers with 
useful information on coping with climate change. Expected 
yields of four barley cultivars for the whole nation showed mod-
erate increases under representative concentration pathways 4.5 
and rapid increases under representative concentration pathways 
8.5. More differences in yield were observed between different 
geospatial regions. Based on k-means clustering and the impact 
of climate change on barley yield, regional characteristics of the 
whole country could be classified into six categories. The geo-
spatial crop simulation modelling could be extended to determine 
geospatial variations in staple crop productions due to other envi-
ronmental scenarios of interest.

K e y w o r d s: barley, climate change, crop model, geospatial 
projection, yield

INTRODUCTION

Global carbon dioxide (CO2) concentration will likely 
increase to a range of 421 to 936 ppm, associated with an 
increase in mean global surface temperature between 2000 
and 2100 (IPCC, 2013). The Intergovernmental Panel 
on Climate Change (IPCC) has projected that the global 
warming trend from 1986-2005 to 2081-2100 will show 
a temperature increase of 0.3°C to 1.7°C based on repre-
sentative concentration pathways 2.6 (RCP), 1.1 to 2.6°C 
based on RCP4.5, 1.4°C to 3.1°C based on RCP6.0, and 
2.6 to 4.8°C based on RCP8.5. Elevation of atmospheric 
CO2 concentration and the accompanying increase in tem-
perature is expected to affect agricultural production due 
to changes in evapotranspiration, plant growth rates, plant 
litter composition, and the nitrogen-carbon cycle (Long et 
al., 2006). Consequences in a particular location are like-
ly to vary depending on the magnitude of these changes, 
responses of specific crops, location-specific management, 
and socio-economic conditions. It is essential to investigate 
the regional impact of projected increases in anthropogenic 
greenhouse gases (GHGs) and subsequent global climate 
change on the production of crops of interest to understand 
the effect of climate change on local crop production of 
interest and recommend appropriate adaptation measures 
in time.
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Among many crops of international interest, barley 
(Hordeum vulgare) is one of the primary cereal crops. 
Barley is grown on every continent on which crops are 
grown because it can adapt to various environmental con-
ditions. Thus, it is produced with a wider topographical 
distribution than most other cereals. World barley produc-
tion in 2014 was 144 million t, ranking the fourth in grain 
production (FAO, 2017). In South Korea, barley can be 
cultivated in all provinces, ranging from Jeju Island in the 
south to Kangwon in the north, covering a total of six dif-
ferent climate categories (Cfa, Cwa, Dfa, Dfb, Dwa, and 
Dwb) under the Koeppen-Geiger climate classification 
system (Kottek et al., 2006). Under this grouping system, 
small letters a and b refer to hot and warm summer, respec-
tively, while w and f refer to dry winter and fully humid, 
respectively. This country encompasses coastal and inner 
continental regions that respond differently to climate chan- 
ge. Given the variable climate and soil conditions, both 
policymakers and agriculturalists need more sophisticated 
systems to access regional variances in the influence of cli-
mate change on crop production.

Crop growth and development depend on integrated 
responses of various eco-physiological processes consider-
ing multiple environmental conditions such as temperature, 
CO2 concentration, nutrients, water, and field management. 
Not even an enormous effort would guarantee the elucida- 
tion of these variables and their interactions in a field ex- 
periment examining potential effects on agricultural pro-
duction. Therefore, it is crucial to develop agricultural 
system models that are calibrated efficiently and validated 
to investigate the combined effect of various chemical, 
physical, and biological processes (Ahuja et al., 2000; 
Kirschbaum, 2000; Zawadzki et al., 2005). Process-based 
crop models that simulate the development process of bio- 
mass and yield components are valued evaluating the im- 
pact of climate change on crop growth and development. 
Crop models frequently used to simulate the growth and de- 
velopment of barley include CERES-barley (Otter-Nacke 
et al., 1991) in the Decision Support System for Agrotech- 
nology Transfer (DSSAT) (Jones et al., 2003), environmen-
tal policy integrated climate (EPIC) model (Williams et al., 
1998), SHOOTGROW (McMaster, 1993), and World Food 
Studies (WOFOST) model (Hijmans et al., 1994).

Many studies have examined the physiology and pro-
ductivity of barley under climate change (Bunce, 2000; 
Chloupeka et al., 2004; Trnka et al., 2004; Tubiello et al., 
2000; Olesen et al., 2011; Tao et al., 2017). Some of these 
efforts were made based on experimental field studies 
while others used crop simulation approaches. Bunce 
(2000) reported the effect of temperature and CO2 chang-
es under subjectively designed experimental conditions. 
Trnka et al. (2004) used crop simulation to examine future 
temperature using chronological models based on assump-
tions that autoregressive parameters and CO2 level would 
remain constant. Tao et al. (2017) have recently reported an 

approach to design future barley ideotypes using a crop 
model ensemble. Similarly to these efforts, it would add 
more realistic values to crop simulation if the applied 
projected temperature regimes and CO2 concentrations 
were based on more realistic physical models. In this 
research, we considered CO2 level under different RCP 
scenarios and the expected temperature provided by the 
Korea Meteorological Administration (KMA). These data 
were compiled based on two coupled climate models: 
the Hadley Centre Global Environmental Model version 
2-Atmosphere-Ocean (HadGEM2-AO) model and the 
Hadley Centre Global Environmental Model version 
3-Regional Atmosphere (HadGEM3-RA) model.

The objective of the present research was to project 
geospatial variation in barley yield for different geographic 
regions of South Korea due to climate change for the next 
100 years. Based on the sensitivities to climate change, 
clustering analysis was achieved to categorise South Korea 
into different topographical regions. Simulation studies 
were performed to achieve the research objective follow-
ing estimation and evaluation of the six coefficients of the 
CERES-barley model for four barley cultivars commonly 
grown in South Korea. We also developed a geospatial crop 
simulation modelling (GCSM) scheme to project the geo-
graphical variation in production of barley under climate 
change and to seek for future adaptation measures using the 
developed simulation design.

MATERIALS AND METHODS

This research was performed using the CERES-barley 
model in the DSSAT crop model package v4.6. Field exper-
iments were conducted at Chonnam National University 
(CNU; 35o10’ N, 126o53’ E, 33m above sea level), Gwangju 
(Fig. 1a). An open field experiment was performed to collect 
data to estimate six genetic coefficients of CERES-barley. 
A TGFC experiment was carried out to test the perfor-
mance of the estimated model at elevated temperatures. 
The country including all its islands lies between latitudes 
of 33° and 39°N and longitudes of 124° and 131°E. It has 
a total area of ~ 100 032 km2. The 30-year average annual 
temperatures in regions of interest where barley could be 
cultivated ranged from ~ 10 to 15ºC according to the Korea 
Meteorological Administration, KMA (https://data.kma.
go.kr/). The corresponding average annual total precipita-
tion amounts varied from ~1 000 to 1 800 mm, of which 
~ 60% of the rainfall was concentrated between June and 
September.

The open field experiment was carried out from 2013 
to 2016 for three barley-growing seasons at CNU to deter-
mine genetic coefficients of four winter barley varieties 
(Hordeum vulgare L. var. nudum Hook. f. cv. SaeChal, 
HeenChal, KeunAl, and Dajin). Among cultivars bred by 
the National Institute of Crop Science (http://www.nics.
go.kr/english/index.do), we deliberately chose two naked 
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cultivars of SaeChal (bred in 1994) and HeenChal (bred in 
1993) and two hooded cultivars of KeunAl (bred in 1993) 
and Dajin (bred in 2005 as a malting cultivar). These barley 
varieties were seeded at a planting rate of 140 kg ha-1 on 
6 November 2013 (day of year, DOY 310), 10 November 
2014 (DOY 314), and 5 November 2015 (DOY 309) in 
a field arranged as three randomised complete blocks. Soil 
texture of the experimental area was categorised as loam 
(Fluvisol with total organic carbon 12.3 g kg-1, total nitro-
gen 1.0 g kg-1, available phosphate 13.1 g kg-1, and soil pH 
in H2O of 5.5), based on the United States Department of 
Agriculture (USDA) classification method (for specific 
soil properties, refer to Yun et al., 2012). The field was 
managed with optimum N-P2O5-K2O fertilisation of 80-70-
35 kg ha-1 in three crop seasons. Total yield was estimated 
by multiplying yield components.

To measure yield components including ears per m2, 
spikelets per ear, the percentage of filled grain (PFG), and 
1 000-grain weight (GW), ten plants were randomly pruned 
from middle rows of each plot before harvest. PFG was 

determined by dividing the total number of grains by the 
number of grain-filling seed as a measure of filled grains. 
The 1 000-GW was used to represent the weight of a single 
grain because the latter was very small. Grain-filling seed 
was used to determine the 1 000-GW. These components of 
yield were measured three times in each experimental plot. 
Weather data were measured using an automated weather 
station (WS-GP1, Delta-T Devices, Cambridge, UK). 

The CERES-barley was calibrated using data obtained 
from the TGFC system (Fig. 1b) located at CNU for two 
barley-growing seasons from 2014 to 2016. The TGFC 
used in this study (Kim et al., 2011) was designed to mimic 
projected shifts in atmospheric air temperature based on 
RCP scenario of climate change (IPCC, 2013). Two differ-
ent barley cultivars (SaeChal and HeenChal) were sown at 
a seeding rate of 140 kg ha-1 on 3 November 2014 (DOY 
307) and 2 November 2015 (DOY 306) in TGFCs laid 
out as three randomised complete blocks. Primary TGFC 
treatments included three temperature levels: local ambi-
ent temperature (AT), 1.5oC above AT, and 3.0oC above AT. 
These three temperature levels were assigned as main plots 
with two cultivar treatments, encompassing six experimen-
tal conditions. Fertilisation and yield estimation were the 
same as those described earlier in the open field experiment 
except that components of yield were measured one time 
in each plot due to limited plant population in the TGFCs. 
Plant data from 2014-2015 in the TGFC experiment were 
used to calibrate the model while those data from 2015-
2016 were used to validate the model.

Environmental data applied to simulate the impact of 
climate change on barley yield in this study included: (1) 
soil data, (2) projected climate data, and (3) projected CO2 
concentration data. Pixel-based soil data were obtained 
from digital soil maps (1:5 000) for the entire country from 
the National Academy of Agricultural Science (NAAS), 
South Korea (http://soil.rda.go.kr/eng/). Please refer to 
Hong et al. (2009) for a detailed soil inventory. Based on 
these soil data, information about topsoil properties, soil 
type, effective soil depth, and soil structure for the cor-
responding region was aggregated to determine soil input 
parameters of the CERES-barley model in the GCSM sys-
tem. Based on the aggregated soil information, the GCSM 
system empirically selected one of the eight potential soil 
input libraries predetermined for barley cultivation in 
South Korea using the generic soil input inventory of the 
DSSAT crop model package v4.6 (Table 1). Climate data 
from 12 years (1999-2011) with a 3-km grid cell resolu-
tion for South Korea were used as baseline climate data for 
the model input in the GCSM system. These climate data 
were projected using a regional climate model (Weather 
Research and Forecasting Model, WRF) based on a dynam-
ical downscaling method to obtain high-resolution regional 
agro-climate indices (Ahn et al., 2010).

Fig. 1. Map of the research site at Chonnam National University 
(CNU), Gwangju and nine provinces in South Korea (a) and sche-
matic illustration of the temperature gradient field chamber (b).
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Climate change scenarios were obtained from 
Coordinated Regional climate Downscaling Experiment 
(CORDEX) initiative created by the Task Force for 
Regional Climate Downscaling (TFRCD) and established 
by the World Climate Research Programme (WCRP) in 
2009. Regional climate model HadGEM3-RA and general 
circulation model HadGEM2-AO were used to simulate re- 
gional climate change projections in South Korea under two 
emission scenarios related to RCP4.5 and RCP8.5 (IPCC, 
2013). Large-scale climate variables from HadGEM2-AO 
were dynamically downscaled to a physically consistent 
evolution on a smaller (0.44 × 0.44 degree) scale using the 
HadGEM3-RA model. Further information on these mod-
els can be found at the CORDEX-East Asia website (http://
cordex-ea.climate.go.kr/). Projected changes in tempera-
ture and precipitation in South Korea under RCP4.5 and 
RCP8.5 associated with CO2 concentration were simulated 
for future years centred on 2030, 2050, 2070, and 2100. 
Regional shifts estimated from baseline regional climate 
data were incorporated into the primary trend of climate 
change to produce regional projections of daily climate data. 
These projected data were used for each 12-year projec-
tion based on the 12-year baseline (1999 to 2011), centered 
on 2005, to include inter-annual climate variability. These 
projected variations in temperature and precipitation were 
superimposed on the 12-year baseline. This method was 
previously used for projection of daily climate change in 
the Central Great Plains, USA (Ko et al., 2012).

The CERES-barley model in the DSSAT crop model 
package v4.6 (www.DSSAT.net) is a process-based man-
agement-level model developed for simulations of grain 
yield, grain development, soil water, and soil nutrient bal-
ance associated with barley growth. Here, we highlighted 
the difference between our research and the common prac-
tice in using the CERES-barley model. In the CERES-barley 
model, climate, CO2 concentration, and soil data are inde-
pendent variables. In our research, we noted that long-term 
global climate depended on CO2 concentration. Therefore, 
CO2 concentration can influence crop growth through tem-

perature change and solar radiation use efficiency (RUE). 
These factors will be discussed in more details in the next 
subsection. The CERES-barley model calculates the net 
biomass production using the RUE approach. Effects of 
elevated CO2 concentration on RUE have been modelled 
empirically using curvilinear multipliers (Allen et al., 
1987; Peart et al., 1989). A y-intercept term in a modified 
Michaelis-Menten equation is used to fit crop responses to 
various CO2 concentrations:

(1)

where: R is RUE, yield or other responses; Rm is the asymp-
totic response limit of (R – Ri) at a high CO2 concentration; 
Ri is the intercept on the y-axis; and Km is the value of sub- 
strate concentration, that is, CO2, at which (R – Ri) = 0.5 Rm.
Similar approaches have been used to simulate the effect of 
CO2 on cropping systems in EPIC (Williams et al., 1989), 
agricultural production systems simulator (APSIM) along 
with nitrogen use efficiency and water use efficiency (Reyenga 
et al., 1999), and Sirius (Jamieson et al., 2000) models. 
The model accuracy was validated and applied to simu- 
late the future impact of climate change in South Korea.

The minimum driving variables for model simulations 
were daily solar radiation, maximum and minimum tem-
peratures, precipitation, physical and hydraulic properties 
of soil, soil texture, and initial soil nitrogen and soil water 
status. Typical crop management metadata included plant-
ing date, planting depth, row spacing plant population and 
amount and method of irrigation and fertiliser applications. 
To apply the CERES-barley model to project the impact 
of barley on climate change, six genetic coefficients (P1V, 
G1, G3, P1V, G1, and G3) of four different varieties were 
parameterised. The model characterises the growth process 
of a barley species using these six genetic coefficients. An 
iterative approach recommended by Godwin et al. (1989) 
was employed to develop genetic coefficients based on trial 
and error to match the measured phenology and yields with 
simulated values.

Ta b l e  1. Soil information used in this study

ID Texture Depth (cm)
Soil water* (cm3 cm-3)

CLL DUL
IB00000002 Medium silty clay 150 0.228 0.385
IB00000003 Shallow silty clay 60 0.228 0.385
IB00000005 Medium silty loam 150 0.108 0.218
IB00000006 Shallow silty loam 60 0.108 0.218
IB00000008 Medium sandy loam 150 0.052 0.176
IB00000009 Shallow sandy loam 60 0.052 0.176
IB00000011 Medium sand 150 0.024 0.096
IB00000012 Shallow sand 60 0.024 0.096

*Volumetric water content of the topsoil averaged among 5, 15, and 30 cm at the crop lower limit (CLL) and at the drained upper limit 
(DUL), respectively.
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The CERES-barley model was calibrated and validated 
using TGFC and open field experiment data obtained at 
CNU, Gwangju as described earlier. An initial test was then 
conducted to measure the sensitivity of the proposed model 
to changes in atmospheric CO2 concentration and tempera-
ture before it was applied to the whole geographical regions 
of South Korea. For this particular purpose, climate data 
collected over the past 12 years (1999-2011) were obtained 
from KMA and used as the standard upon which changes 
were superimposed to determine the inter-annual variabil-
ity. The average value for each DOY was then calculated. 
CO2 concentrations ranging from 400 to 1 000 µmol mol-1 

were used in 100 µmol mol-1 intervals. Temperature sensi-
tivity was examined by varying measured daily maximum 
and minimum temperatures by 0 to +10oC in 1oC intervals.

The GCSM scheme was formulated using CERES-
barley in the DSSAT crop model package v4.6. In the 
GCSM scheme, the CERES-barley model was designed to 
perform numerous runs using pixel-based 2-dimensional 
climate and soil data based on shell scripting in a Linux 
operating system (Fig. 2). The GCSM strategy allows the 
whole country to be split into a 2-dimensional array of pix-
els, with each pixel representing an area of three kilometres 
by three kilometres. The pixel-by-pixel soil data provided 
by the NAAS and the projected climate data provided by 
the KMA were preprocessed and used as input for the 
CERES-barley model to generate pixel-by-pixel projected 
crop yield values over the next 100 years.

A statistical agreement evaluator used to assess the 
model performance of the simulation of yield was the 
p-value from a paired t-test. Also, two mathematical equa-
tions were used to analyse the model performance of the 
simulation: i) root mean square error (RMSE), Eq. (2); and 
ii) Nash-Sutcliffe model efficiency (NSME) (Nash and 
Sutcliffe 1970), Eq. (3).

(2)

(3)

where: Si is the ith simulated value, Mi is the ith measured 
value, Mavg is the mean measured value, and n is the number 
of data pairs. NSME is a normalised statistic that defines the 
relative magnitude of the residual variance in comparison 
with observed data variance. NSME specifies how well the 
plot of observed compared to simulated data corresponds 
to the 1:1 line. NSME values vary from – ∞ to 1. The nearer 
the value is to one, the more precise the model is. The lesser 
or closer to zero the value is, the lower (or equal) is the 
accurateness of the model prediction in comparison with 
the observed mean. Also, contributions of year, region, 
RCP scenario, cultivar, and their interactions were investi-
gated according to the analysis of variance (ANOVA) using 
R software version 3.3 (https://www.r-project.org/).

To establish a landscape grouping system for South 
Korea, k-means clustering was applied to projected crop 
yield values. The entire country was categorised into topo-
graphical units according to crop production sensitivities 
about climate change. Eight variables were used: variations 
from the baseline to 2030, from 2030 to 2050, from 2050 
to 2070, and from 2070 to 2100 under both RCP4.5 and 
RCP8.5 scenarios. The k-mean clustering process was car-
ried out using the “kmeans” function contained in the R 
software. This process was continued for each of the four 
species. In this study, K = 6 was selected. Although K > 6 
could be deliberated, quantities of the new clusters were 
too small to be projected. All plots (Figs 8-10) were created 
using the R package “ggplot2”.

In the k-means clustering process, K first centres were 
randomly selected. Each pixel was categorised 1, 2, 3…, 
and K according to the Euclidean distance from these K 
centres. The average vector of each resulting cluster con-
verted the new centre. These steps mentioned above were 
continued until convergence was reached, that is, both 
changes of means and labels from the old to further phase 
were adequately small to achieve a predefined stopping 
condition.

RESULTS

The mean solar radiation during the barley growing 
season was 12.1 MJ m-2 d-1 for 2013-2014, 10.1 MJ m-2 d-1 
for 2014-2015, and 12.4 MJ m-2 d-1 for 2015-2016 (Fig. 3). 
Average temperature during the barley growing season was 
7.9 oC for 2013-2014, 7.7 oC for 2014-2015, and 9.0 oC for 
2015-2016. Cumulative mean growing season precipita-
tion was 318.9 mm (1.8 mm d-1) for 2013-2014, 462.9 mm 
(2.2 mm d-1) for 2014-2015, and 363.4 mm (1.8 mm d-1) for 
2015-2016. The heaviest precipitation of the barley grow-
ing season was recorded on 24 November 2013 (DOY 186; 
26.5 mm d-1), 24 November 2014 (DOY 328; 71.0 mm d-1), 
and 18 November 2015 (DOY 322; 34.5 mm d-1).

Fig. 2. Diagrammatic representation of the geospatial barley sim-
ulation design using the CERES-barley model.
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A combination of cultivar parameters yielding minimum 
RMSE and maximum NSME values between measurements 
and simulations in growth and yield was selected during 
calibration of the CERES-barley model. In the calibration, 
CERES-barley reproduced well the growth and yield of the 
four barley cultivars grown in the field from 2014 to 2016 
(Fig. 4a). Simulated mean grain yields of 4 642 kg ha-1 in 
2014, 4 028 kg ha-1 in 2015, and 4 365 kg ha-1 in 2016 were 
not significantly different from measured mean grain yields 
of 4 388 kg ha-1 in 2014 (p = 0.591), 4,436 kg ha-1 in 2015 
(p = 0.496), and 3 308 kg ha-1 in 2016 (p = 0.063) based on 
paired t-test.  and NSME values were 697.1 kg ha-1 and -5.60 
in 2014, 670.9 kg ha-1 and -0.15 in 2015, and 1 217.0 kg ha-1 
and -126.30 in 2016, respectively. While estimated values 
of P1V, G1, and G3 were equivalent among these four cul-
tivars, those of P1D, P5, G2, and PHINT varied (Table 2). 
Genetic parameters determined here were used for further 
evaluation and application processes of the model.

The capability of the CERES-barley model to repro-
duce current and future barley productivities was verified 
using experimental data for two barley varieties (SaeChal 
and HeenChal) grown under three temperature regimes 
(AT, + 1.5oC, and + 3.0oC) in TGFC. Simulated grain yields 
had a statistically significant agreement with measured 
grain yields (Fig. 4b). Based on paired t-test, simulated 
mean grain yields (4 841 kg ha-1 in 2015 and 4 366 kg 
ha-1 in 2016) were similar to measured mean grain yields 
(5 233 kg ha-1 in 2015, p = 0.268; 4 806 kg ha-1 in 2016, 
p = 0.447). These simulated grain yields agreed with 
measured grain yields, with  and NSME values of 979.2 kg 
ha-1 and -3.39 in 2015 and 718.8 kg ha-1 and 0.33 in 2016, 
respectively. 

Fig. 3. Seasonal climate conditions during the barley growing 
seasons in 2013-2014 (a), 2014-2015 (b), and 2015-2016 (c). SR, 
solar radiation; Precip, precipitation; and AT represent solar radia-
tion, precipitation, and atmospheric temperature, respectively. 

Fig. 4. Simulated vs. measured grain yields of barley for four 
local varieties of SaeChal, HeenChal, KeunAl, and Dajin during 
three crop seasons from 2014 to 2016 (a) and for three temperatu- 
re regimes of atmospheric temperature (AT), + 1.5 and + 3.0°C: 
(a) using two cultivars of SaeChal and HeenChal. Horizontal bars 
represent ±1 standard deviation (n = 9 for the four variety treat-
ments in Fig. 4a and n = 12 for the three temperature regimes in 
Fig. 4b).
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Grain yields of barley were projected to increase as the 
temperature was raised up to 3.0oC for Dajin, 2.0oC for 
SaeChal and KeunAl, and 1.0oC for HeenChal above the 
current conditions. They would then decrease (Fig. 5a). 
Grain yields of barley increased as CO2 concentration in- 
creased up to 500 ppm. Subsequently, a plateau was 
maintained, similar to the pattern for all barley cultivars 
(Fig. 5b).When elevation effects of temperature and CO2 
were combined, simulated grain yields of barley increased 
as the combination of temperature and CO2 concentration 
increased up to 1.5oC and 600 ppm (Fig. 5c). Grain yields 
of barley reached a plateau after an elevated regime of the 
temperature of 1.5oC and CO2 concentration of 600 ppm, 
with a similar pattern for all barley cultivars. Dajin was 
more responsive to temperature and CO2 variations than 
the other cultivars.

The GCSM system formulated to simulate the poten-
tial impact of climate change on barley projected increases 
of grain yields for all four barley varieties for the whole 
nation in the future, i.e., years 2030, 2050, 2070, and 2100 
under both RCP4.5 and RCP8.5 scenarios (Fig. 6). Grain 
yields of all barley cultivars showed large spatial varia- 
tions within geographical regions of the whole country, 
showing higher yields in southern coastal areas and lower 
yields in inner mountainous regions. Mean grain yields 
of all barley cultivars in the future under the RCP8.5 sce-
nario would vary from region to region in 2030 and 2050. 
They would increase rapidly in 2070 and 2100 for most 
of the administrative areas and the whole country, except 
Jeju (Fig. 7). In Jeju, mean grain yields are likely to 
decrease rapidly in 2070 and 2100. Mean grain yields of 
barley under RCP4.5 scenario were projected to increase 
mostly in a small amount in the future compared to those 
at baseline, with a slow increasing pattern until 2070 and 
a gradually decreasing trend in 2100 for most regions except 
Jeju, where mean grain yields are likely to drop in 2070 
and 2100. Mean grain yields under the RCP8.5 scenario 

Ta b l e  2. Genetic coefficients of the four barley cultivars used in this study

Generic coefficient* Unit SaeChal HeenChal KeunAl Dajin

P1V Day 10 10 10 10

P1D % 23 23 20 20

P5 oC day 230 220 180 100

G1 no g-1 22 22 22 22

G2 mg 29 25 34 43

G3 g 1.5 1.5 1.5 1.5

PHINT oC day 93 93 90 93

*P1V – optimum temperature required for vernalization, P1D – photoperiod response (% reduction in the rate per 10 h drop in the 
photoperiod), P5 – grain filling (excluding lag) phase duration, G1 – kernel number per unit canopy weight at anthesis, G2 – standard 
kernel size under optimum conditions, G3 – standard, non-stressed mature tiller weight, PHINT – interval between successive leaf tip 
appearances.

Fig. 5. Responses of grain yields of barley to temperature chang-
es, ΔT (a), CO2 concentrations (b), and combinations of ΔT and 
CO2 (c). Vertical bars represent ± 1 standard deviation (n = 3).

a

b

c
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were projected to decline by –2.7% by 2030 compared to 
those at baseline and to increase rapidly from +22.3% in 
2050 to +42.9% in 2100, while those under the RCP4.5 
scenario were projected to increase by +16.0% by 2050 
and by +7.5% by 2100 (Table 3). For nine administrative 
regions (Chonbuk, Chonnam, Chungbuk, Chungnam, Jeju, 
Kangwon, Kyunggi, Kyungbuk, and Kyungnam), mean 
grain yields were projected to increase with trends similar 
to those of the whole nation except for Jeju, although some 
variations exist due to different meteorological and envi-
ronmental conditions. In the case of Jeju, mean grain yields 
were projected to decrease gradually in the future (from 
+3.4% in 2050 to –26.6% in 2100 under RCP8.5 and from 
–1.5% in 2050 to –10.1% in 2100 under RCP4.5) (Table 3).

The entire country could be classified into six geo-
graphical units (types) based on k-means clustering using 
eight variables (i.e., changes from the baseline to 2030, 
from 2030 to 2050, from 2050 to 2070, and from 2070 to 
2100 under both the RCP4.5 and RCP8.5 scenarios). The 
distribution of each of these six landscape types is shown 
in Fig. 8. Contour plots (Fig. 8a, 8g, 8m, and 8s) show the 
distribution of geographical unit Type 1 in the country. 
Type 1 is scattered over South Korea. Type 1 exists even 
in regions in which other units dominate. On Jeju Island, 
it is concentrated in mountainous areas in the central part. 
Type 2 is focused on the southwestern part of South Korea, 
particularly in Chonnam Province. There are substructures 
even in Chonnam. Chonnam has a mixture of Types 1 and 
2. Coastal Jeju region is a unique geographical unit of 
Type 3. Both Types 4 and 6 stretch from northwest to south-

east. However, Type 6 shows a broader distribution than 
Type 4. Chungnam mainly has Type 6. Type 5 is distribu- 
ed in coastal areas in the south excluding Jeju Island. 
Proportions of these six geographical units in each admin-
istrative district for four barley cultivars are shown in bar 
charts (Fig. 9). The impact of climate change on different 
geographical units (Type) is shown in Fig. 10. Mean grain 
yields of all barley cultivars in the future under RCP8.5 
and RCP4.5 scenarios compared to those at baseline are 
likely to vary for different geographical Types. Mean grain 
yields under RCP8.5 were projected to increase gradually in 
Type 1, but rapidly in Type 2, as year processed. However, 
those under RCP4.5 are likely to maintain small increases 
in both Types. In Type 3, grain yields under both RCP8.5 
and RCP 4.5 scenarios were projected to decline gradually 
with time. In Type 4, grain yields under RCP8.5 scenario 
are likely to remain constant or decrease in 2030 and 2050 
but increase in 2070 and 2100, while those under RCP4.5 
scenario are likely to increase only in 2050. In Type 5, grain 
yields under RCP8.5 were projected to decline in 2030, 
2050, and 2070 but rise sharply in 2100, while those under 
RCP4.5 are likely to maintain constant in 2030, 2050, and 
2070 but drop dramatically in 2100. In Type 6, grain yields 
under RCP8.5 scenario possibly will decrease in small 
amounts in 2030 and 2050 but increase rapidly in 2070 and 
2100, while those under RCP4.5 may potentially maintain 
constant in 2030, grow in low numbers in 2050 and 2070, 
and decrease in 2010.

Ta b l e  3. Percent changes of barley yields in future years (2030, 2050, 2070, and 2100) from the baseline under the representative 
concentration pathway (RCP) 8.5 scenario and the RCP4.5 scenario in South Korea (SK) and nine administrative provinces

Region
RCP 8.5 RCP 4.5

2030 2050 2070 2100 2030 2050 2070 2100

Chonbuk -13.6 -3.5 25.0 53.8 5.0 13.7 21.2 21.1

Chonnam -7.9 11.7 26.4 49.6 11.2 20.7 26.5 17.7

Chungbuk -2.1 -0.8 20.6 38.2 4.4 13.2 10.1 1.2

Chungnam -6.4 -17.1 21.1 46.9 9.4 15.9 10.9 -2.4

Gangwon -0.6 5.0 25.2 38.1 4.8 9.8 13.5 11.1

Gyeonggi 5.5 -2.3 19.2 37.8 1.6 15.8 10.7 19.7

Jeju 1.3 3.4 -4.4 -26.6 -0.1 -1.5 -8.2 -10.1

Kyeongbuk -1.9 1.8 24.8 45.3 7.1 15.7 16.6 8.9

Kyeongnam 1.7 7.0 26.8 55.1 6.9 16.1 18.2 12.3

SK -2.7 0.5 22.3 42.9 6.7 11.9 16.0 7.5
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DISCUSSION

An evaluation system for estimating the impact of 
climate change on barley yield and capable of projecting 
productivities for large regions containing a significant 
amount of data was developed. Expected yields of four 
barley cultivars for the entire nation of South Korea indi-
cated gradual increases as year progressed under the 
RCP4.5 scenario. They presented rapid increases under 
the RCP8.5 scenario (refer to Table 3). It appears that bar-
ley is constrained by low temperatures in South Korea so 
that potentially elevated temperatures allow an increase 
in growth and yield. Meanwhile, more discrepancies 
were observed in yield responses for diverse topographi-
cal regions. Results of the current study suggest that the 
proposed GCSM system using the CERES-barley model in 
DSSAT v4.6 could be a useful tool to simulate crop pro-
ductivity under climate change scenarios to investigate the 
potential impact of regional climate change on crop yields 
and remedial measures for future agricultural regimes.

While considerable efforts have been made to enumer-
ate global crop productions, especially considering the 
changing climate (Lobell and Field 2007; Rosenzweig et 
al., 2014), it might be unmanageable at present to measure 
the collective impact of climate change on global agri-
cultural productivity (Gornall et al., 2010). Difficulties 
mainly stem from complications as regards an adequate 
classification of cultivated lands, uncertainties of climate 
projection models, and genetic, environmental, and regio- 
nal variabilities in crop production. The global distribution 
of arable areas is likely to change continuously not only 
due to current drivers of socio-economic development and 
environmental changes but also due to potential impacts of 
climate change (Ramankutty et al., 2002). It is also likely 
that the variability in regional and global crop producti- 
vity will significantly change (Lobell et al., 2011; Olesen et 
al., 2011; Thornton et al., 2009). Therefore, a more typical 
and advanced crop modelling scheme that can reproduce 
spatiotemporal crop productivity with a fine grid scale is 
necessary to deliver local changes of crop production. There 

Fig. 8. Grouping of simulated grain yields of four barley varieties of DaJin (a–f), HeenChal (g–l), KeunAl (m–r), and SaeChal (s–x) in 
South Korea according to eight different variables (from now to 2030, from 2030 to 2050, from 2050 to 2070, and from 2070 to 2100 
under both RCP4.5 and RCP8.5 scenarios) using k-means cluster examination: Type = 1 (a, g, m, and s), Type = 2 (b, h, n, and t), Type 
= 3 (c, j, o, and u), Type = 4 (d, j, p, and v), Type = 5 (e, k, q, and w), and Type = 6 (f, l, r, and x). 
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have been some efforts to simulate geospatial variations to 
determine impacts of climate change on staple crops, e.g., 
paddy rice in Southeast Asia (Li et al., 2017; Chun et al., 
2016) and maize and bean in East Africa (Thornton et al., 
2009). To the best of our information, the current research 
is the first one that simulates the effect of climate change on 
barley with a fine grid (3 km)-based regional yield projec-
tion by categorising regional productivity using k-means 
clustering.

Results of ANOVA for simulated barley yields cat-
egorised using four factors (RCP scenario, year, region, 
and cultivars) indicated that year and area were the most 
important factors while varieties and climate scenario were 
far less critical (Table 4). This analysis coincided with 
interpretations based on the diagram shown in Fig. 7. The 
scenario-year interaction had the most substantial influ-
ence on the total variation of crop yield, followed by year 
and region. Cultivar and cultivar-related interaction terms 
were far less critical. Therefore, RCP scenario, year, area, 
and their interactions are important factors explaining crop 

yield variations. This fact is coherent with results shown in 
Fig. 7 where crop yield trajectory patterns do not seem to 
differ from cultivar to cultivar significantly.

The impact of climate change on crop production varies 
depending on diverse climate types and soil textures. South 
Korea comprises six climate types: Cfa, Cwa, Dfa, Dfb, 
Dwa, and Dwb based on the Koeppen-Geiger grouping 
system (Kottek et al., 2006). Allowing for eight different 
dominant soil textures spread out in croplands of South 
Korea based on the USDA classification, we can assume 
a total of 6 × 8 groupings of climate-soil types. Clustering 
allowed us to reduce local characteristics of the entire 
country from 48 to six classes.

Decision-making procedures in agricultural policy 
issues can be either country-wide or area-specific. The dis- 
semination of Type 1 might be useful for us to evaluate 
the prospect of introducing country-wide climate change 
policies (Fig. 8). The spread of other types might be benefi-
cial for the purpose of determining area-specific strategies. 
However, further efforts should be followed to obtain 
detailed classification information on the distribution of 

Ta b l e  4. Analysis of variance (ANOVA) for simulated barley yields categorized using four factors: climate scenario (RCP4.5 and 
RCP8.5), year (2030, 2050, 2070, and 2100), region (Chonbuk, Chonnam, Chungbuk, Chungnam, Kangwon, Kyunggi, Kyungbuk, 
Kyungnam, and Juju), and cultivar (Dajin, HeenChal, KeunAl, and SaeChal)

Factor Percentage DF SS MS

Residuals 44.08 28512 13245277403 464551

Scenario (S) 0.58 1 173886850 173886850

Year (Y) 11.58 3 3479041728 1159680576

Region (R) 10.21 8 3068141596 383517700

Cultivar (C) 1.90 3 569808813 189936271

S * Y 14.10 3 4235876624 1411958875

S * R 0.36 8 106734930 13341866

S * C 0.01 3 1948100 649367

Y * R 8.28 24 2489422439 103725935

Y * C 0.45 9 134685501 14965056

R * C 0.96 24 288189472 12007895

S * Y * R 5.91 24 1775864518 73994355

S * Y * C 0.60 9 181601392 20177932

S * R * C 0.11 24 33642758 1401782

Y * R * C 0.54 72 162637949 2258860

S * Y * R * C 0.34 72 103558740 1438316
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each geographical Type and relationships of the data with 
other factors such as climate variables and geographic 
characteristics.

Limitations of the current study include climate projec-
tion models used and the baseline applied. An ensemble 
approach using multiple climate projection models would 
better represent the variability of projected climate changes 
on simulation of the impact of climate change on crops (Ko 
et al., 2012; Thornton et al., 2009). For higher probability 
to represent current and future climate variabilities, a 20- 
to 30-year baseline is considered (White et al., 2011). We 
used a 12-year baseline due to the limited availability of 
grid-based high-resolution regional climate data.

CONCLUSIONS

1. It was demonstrated that the CERES-barley model 
in DSSAT v4.6 was capable of reproducing current field 
conditions and projecting crop productivity under dif-
ferent climate change scenarios. Also, a geospatial crop 
simulation modelling using the model was developed and 
effectively applied to reproduce geospatial variation in bar-
ley yield in South Korea.

2. Regional characteristics of South Korea could be 
classified into six categories according to a cluster analysis.

3. Results obtained provided a preview of the likely 
impact of local climate change on barley grain yields and 
would allow to determine counteractive actions for future 
agricultural activities.

4. Although the developed geospatial crop simulation 
modelling system needs additional elaboration to meet the 
requirements of a particular tool for scientists and stake-
holders, we believe that this system could be efficiently 
used to reproduce geospatial dissimilarities of climate 
change impact on crops and search for probable clarifica-
tions to the impending food uncertainty problem.

Conflict of interest: The Authors do not declare con-
flict of interest.

ACKNOWLEDGEMENT

The authors wish to thank Professor Joong-Bae Ahn at 
Pusan National University for providing the climate data 
for this study.

REFERENCES

Ahn J., Hur J., and Shim K., 2010. A simulation of the agro-
climate index over the Korean Peninsula using dynamical 
downscaling with a numerical weather prediction model. 
Kor. J. Agric. Forest Meteorol., 12, 1-10.

Ahuja L.R., Rojas K.W., Hanson J.D., Shafer M.J. and Ma L., 
(Eds), 2000. Root Zone Water Quality Model. Modeling 
management effects on water quality and crop production. 
Water Resources Publications, LLC, CO, USA.

Allen L.H., Boote K.J., Jones J.W., Valle R.R., Acock B., 
Rogers H.H., and Dahlman R.C., 1987. Response of vege- 

tation to rising carbon dioxide: photosynthesis, biomass, 
and seed yield of soybean. Global Biochem. Cycles, 1, 
1-14. 

Bunce J.A., 2000. Responses of stomatal conductance to light, 
humidity and temperature in winter wheat and barley grown 
at three concentrations of carbon dioxide in the field. Global 
Change Biol., 6, 371-382. 

Chloupeka O., Hrstkovaa P., and Schweigert P., 2004. Yield 
and its stability, crop diversity, adaptability and response to 
climate change, weather and fertilisation over 75 years in 
the Czech Republic in comparison to some European coun-
tries. Field Crops Res., 85, 167-190. 

Chun J., Li S., Wang Q., Lee W., Lee E., Horstmann N., Park 
H., Veasna T., Vanndy L., Pros K., and Vang S., 2016. 
Assessing rice productivity and adaptation strategies for 
Southeast Asia under climate change through multi-scale 
crop modeling. Agric. Syst., 143, 14-21.

FAO, 2017. Crops/Regions/World List/Production Quantity for 
Barley, 2014 (pick list). Food and Agriculture Organization 
Corporate Statistical Database (FAOSTAT). 

Godwin D.C., Ritchie J.T., Singh U., and Hunt L.A., 1989. 
A User’s Guide to CERES-wheat – v2.10. Int. Fert. 
Develop. Center, Muscle Shoals, 89 pp.

Gornall J., Betts R., Burke E., Clark R., Camp J., Willett K., 
and Wilshire A., 2010. Implications of climate change for 
agricultural productivity in the early twenty-first century. 
Phil. Trans. Royal Soc., B, 365, 2973-2989.

Hijmans R.J., Guiking-Lens I.M., and van Diepen C.A., 1994. 
WOFOST 6.0: User’s guide for the WOFOST 6.0 crop 
growth simulation model. Wageningen, Nederland.

Hong S., Zhang Y., Hyun B., Sonn Y., Kim Y., Jung S., Park C., 
Song K., Jang B., Choe E., Lee Y., Ha S., Kim M., Lee J., 
Jung G., Ko B., and Kim G., 2009. An introduction of 
Korean soil information system. Kor. J. Soil Sci. Fert., 42, 
21-28.

IPCC, 2013. Climate change 2013: the physical science basis. 
Contribution of Working Group I to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change 
(Eds T.F. Stocker D. Qin G.-K. Plattner M.M.B. Tignor 
S.K. Allen J. Boschung A. Nauels Y. Xia V. Bex, and P.M. 
Midgley). Cambridge University Press, New York, NY, 
USA.

Jamieson P.D., Berntsen J., Ewert F., Kimball B.A., Olesen 
J.E., Pinter Jr., P.J., Porter J.R., and Semenov M.A., 
2000. Modeling CO2 effects on wheat with varying nitrogen 
supplies. Agric. Ecosys. Environ., 82, 27-37. 

Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., 
Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., 
Gijsman A.J., and Ritchie J.T., 2003. The DSSAT crop-
ping system model. Europ. J. Agron., 18, 235-265. 

Kim H., Lim S., Kwak J., Lee D., Lee S., Ro H., and Choi W., 
2011. Dry matter and nitrogen accumulation and partition-
ing in rice (Oryza sativa L.) exposed to experimental 
warming with elevated CO2. Plant Soil, 32, 59-71. 

Kirschbaum M.U.F., 2000. Forest growth and species distribu-
tion in a changing climate. Tree Physiol., 20, 309-322. 

Ko J., Ahuja L.R., Saseendran S.A., Green T.R., Ma L., 
Nielsen D.C., and Walthall C.L., 2012. Climate change 
impacts on dryland cropping systems in the Central Great 
Plants, USA. Climatic Change, 111, 445-472. 



JONGHAN KO et al.96

Kottek M., Grieser J., Beck C., Rudolf B., and Rubel R., 2006. 
World map of the Koppen-Geiger climate classification 
updated. Meteorologische Zeitschrift, 15, 259-263.

Li S., Wang Q., and Chun J., 2017. Impact assessment of cli-
mate change on rice productivity in the Indochinese 
Peninsula using a regional-scale crop model. Int. J. 
Climatol., 34, 1147-1160.

Lobell D.B. and Field C.B., 2007. Global scale climate-crop 
yield relationships and the impacts of recent warming. 
Environ. Res. Lett., 2, 1-7. 

Lobell D.B., Schlenker W., and Costa-Roberts J., 2011. Climate 
trends and global crop production since 1980. Science, 333, 
616-620. 

Long S.P., Ainsworth E.A., Leakey A.D.B., Nosberger J., and 
Ort D.R., 2006. Food for thought: Lower-than-expected 
crop yield stimulation with rising CO2 concentrations. 
Science, 312, 1918-1921. 

McMaster G.S., 1993. Another Wheat (Triticum spp.) Model? 
Progress and applications in crop modeling. Rivista di 
Agronomia, 27, 264-272.

Nash J.E. and Sutcliffe J.V., 1970. River flow forecasting 
through conceptual models: Part I. A discussion of princi-
ples. J. Hydrol., 10, 282-290. 

Olesen J.E., Trnka M., Kersebaum, K.C., Skjelvåg A.O., 
Seguin B., Peltonen-Sainio P., Rossi F., Kozyra J., and 
Micale F., 2011. Impacts and adaptation of European crop 
production systems to climate change. Europ. J. Agron., 34, 
96-112. 

Otter-Nacke S., Rirchie J.T., Godwin D.C., and Singh U., 1991. 
A User’s Guide to CERES Barley– V2.10, International 
Fertilizer Development Center Simulation Manual, IFDC-
SM-3, 87 pp.

Peart R.M., Jones R.B., Curry K., Boote K.J., and Allen L.H., 
1989. Impacts of climate change on crop yield in the 
Southern U.S.A. In: The potential effects of global climate 
change on the United States, Report to Congress (Eds J.B. 
Smith, D.A. Tirpak), U.S. Environmental Protection 
Agency, EPA-230-05-89-050, Washing D.C., Appendix C.

Ramankutty N., Foley J.A., Norman J., and McSweeney K., 
2002. The global distribution of cultivable lands: current 
patterns and sensitivity to possible climate change. Global 
Ecol. Biogeog., 11, 377-392.

Reyenga P.J., Howden S.M., Meinke H., and McKeon G.M., 
1999. Modeling global climate change impacts on wheat 
cropping in south-east Queensland, Australia. Aust. Enviro. 
Model Software, 14, 297-306. 

Rosenzweig C., Elliott J., Deryngd D., Ruane A.C., Müllere C., 
Arneth A., Boote K.J., Folberth C., Glotter M., 
Khabarov N., Neumann K., Piontek F., Pugh T.A.M., 
Schmid E., Stehfest E., Yang H., and Jones J.W., 2014. 
Assessing agricultural risks of climate change in the 21st 
century in a global gridded crop model intercomparison. 
PNAS, 111, 3268-3273. 

Tao F., Rötter R.P., Palosuo T., Díaz-Ambrona C.G.H., 
Mínguez M.I., Semenov M.A., Kersebaum K.C., Nendel 
C., Cammarano D., Hoffmann H., Ewert F., Dambreville 
A., Martre P., Rodríguez L., Ruiz-Ramos M., Gaiser T., 
Höhn J.G., Salo T., Ferrise R., Bindi M., and Schulman 
A.H., 2017. Designing future barley ideotypes using a crop 
model ensemble. Europ. J. Agron., 82, 144-162. 

Thornton P.K., Jones P.G., Alagarswamy G., and Andersen J., 
2009. Spatial variation of crop yield response to climate 
change in East Africa. Global Environ. Change, 19, 54-65.

Trnka M., Dubrovský M., and Žalud Z., 2004. Climate change 
impacts and adaptation strategies in spring barley produc-
tion in the Czech Republic. Climatic Change, 64, 227-255. 

Tubiello F.N., Donatelli M., Rosenzweig C., and Stockle C.O., 
2000. Effects of climate change and elevated CO2 on crop-
ping systems: model predictions at two Italian locations. 
Europ. J. Agron., 13, 179-189.

White J.W., Hoogenboom G., Kimball B.A., and Wall G.W., 2011. 
Methodologies for simulating impacts of climate change on 
crop production. Field Crops Res., 124, 357-368.

Williams J.R., Jones C.A., Kiniry J.R., and Spanel D.A., 1989. 
The EPIC crop growth model. Trans. ASAE, 32, 497-511.

Yun S., Kang B., Lim S., Choi W., Ko J., Yoon S., Ro H., and 
Kim H., 2012. Further understanding CH4 emissions from 
a flooded rice field exposed to experimental warming with 
elevated [CO2]. Agric. For. Meteorol., 154, 75-83.

Zawadzki J., Cieszewski C.J., Zasada M., and Lowe R.C., 
2005. Applying geostatistics for investigations of forest 
ecosystems using remote sensing imagery. Silva Fenica., 
39(4): 599-617. 


