PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 72 |

Tytuł artykułu

Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is not clear to what extent trees growing on anthropogenic sites change their growth and biomass allocation to different organs. We assessed the aboveground biomass in a chronosequence of six Scots pine monocultures (between 6 and 20 years old) to examine how precisely the site-specific or control allometric equations may reflect the value of biomass accumulation and allocation in stands growing in harsh site conditions on the overlayer spoil heap made as a result of opencast brown coal mining. The site is characterized by poor edaphic and water conditions and nutrient deficiency. The control equations were developed from Scots pine stands growing on post-agricultural lands in the close vicinity of the spoil heap. We found that equation type significantly influenced results of predicted biomass accumulation for all biomass components studied (although results were only marginally significant for total aboveground biomass, P=0.08). Total aboveground biomass in younger stands (6–9 years old) estimated using site-specific equations was >40% higher and for older stands (17–20 years old) from 7 to 27% lower than estimated using equations developed for the control sites. Our study revealed that under harsh environmental conditions in spoil heaps, biomass of young Scots pine stands significantly differ from values calculated based on control equations developed for more fertile soils with better water conditions in the same region. The control biomass equations may not be suitable to estimate biomass accumulation in stands growing on infertile habitats with poor water conditions, if the control equations are developed for nearby stands but growing under better site conditions.

Wydawca

-

Czasopismo

Rocznik

Tom

72

Opis fizyczny

p.139-150,fig.,ref.

Twórcy

  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035 Kornik, Poland
  • Department of Forest Protection, Faculty of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland
autor
  • Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035 Kornik, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035 Kornik, Poland

Bibliografia

  • Albrektson A. 1980. Relations between tree biomass fractions and conventional silvicultural measurements. Ecological Bulletins (Stockholm) 32: 315–327.
  • Bell L.C. 2001. Establishment of native ecosystems after mining – Australian experience across diverse biogeographic zones. Ecological Engineering 17: 179–186. http://dx.doi.org/10.1016/S0925-8574(00)00157-9
  • Bijak Sz., Zasada M., Bronisz A., Bronisz K., Czajkowski M., Ludwisiak Ł., Tomusiak R., Wojtan R. 2013. Estimating coarse roots biomass in young silver birch stands on post-agricultural lands in central Poland. Silva Fennica 47: 1–14.
  • Chmura D.J., Guzicka M., Rożkowski R., Chałupka W. 2013. Variation in aboveground and belowground biomass in progeny of selected stands of Pinus sylvestris. Scandinavian Journal of Forest Research 28: 724–734. http://dx.doi.org/10.1080/02827581.2013.844269
  • Concise Statistical Yearbook of Poland 2007. Główny Urząd Statystyczny, Warszawa.
  • Dubaniewicz M. 1979. Klimat. In: Województwo piotrkowskie. Monografia regionalna. Zarys dziejów, obraz współczesny, perspektywy rozwoju. Stankiewicz Z. (ed.). Uniwersytet Łódzki, Łódź – Piotrków Trybunalski.
  • Filcheva E., Noustorova M., Gentcheva-Kostadinova S., Haigh M.J. 2000. Organic accumulation and microbial action in surface coal-mine spoils, Pernik, Bulgaria. Ecological Engineering 15: 1–15. http://dx.doi.org/10.1016/S0925-8574(99)00008-7
  • Gower S.T., Gholz H.L., Nakane K., Baldwin V.C. 1994. Production and carbon allocation patterns of pine forests. Ecological Bulletins 43: 115–135.
  • Hamburg S.P. 2000. Simple rules for measuring changes in ecosystem carbon in forestry-offset projects. Mitigation and Adaptation Strategies for Global Change 5: 25–37. http://dx.doi.org/10.1023/A:1009692114618
  • Harris J.A., Hobbs R.J., Higgs E., Aronson J. 2006. Ecological restoration and global climate change. Restoration Ecology 14: 170–176. http://dx.doi.org/10.1111/j.1526-100X.2006.00136.x
  • Hołubowicz K. 1985. Rekultywacja i zagospodarowanie zwałowisk Kopalni Węgla Brunatnego „Bełchatów”. In: Zmiany w środowisku przyszłego Bełchatowskiego Okręgu Przemysłowego. Stan z okresu przedinwestycyjnego i wstępnej fazy pracy elektrowni. Liszewski S. (ed.). Uniwersytet Łódzki, PWN, Warszawa – Łódź, pp. 273–285.
  • Jagodziński A.M., Kałucka I. 2008. Age-related changes in leaf area index of young Scots pine stands. Dendrobiology 59: 57–65.
  • Jagodziński A.M., Kałucka I. 2010. Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap. Dendrobiology 64: 19–30.
  • Jagodziński A.M., Kałucka I. 2011. Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology 66: 71–84.
  • Jagodziński A.M., Oleksyn J. 2009a. Ekologiczne konsekwencje hodowli drzew w różnym zagęszczeniu. I. Wzrost i rozwój drzewostanu. Sylwan 153: 75–85.
  • Jagodziński A.M., Oleksyn J. 2009b. Ekologiczne konsekwencje hodowli drzew w różnym zagęszczeniu. II. Produkcja i alokacja biomasy, retencja biogenów. Sylwan 153: 147–157.
  • Jelonek T., Pazdrowski W., Walkowiak R., Arasimowicz-Jelonek M., Tomczak A. 2011. Allometric models of foliage biomass in Scots pine (Pinus sylvestris L.). Polish Journal of Environmental Studies 20: 355–364.
  • Kellomäki S. 1981. Effect of the within-stand light regime on the share of stem, branch and needle growth in a twenty-year-old Scots pine stand. Silva Fennica 15: 130–139. http://dx.doi.org/10.14214/sf.a15052
  • Knight D.H., Vose J.M., Baldwin V.C., Ewel K.C., Grodzinska K. 1994. Contrasting patterns in pine forest ecosystems. Ecological Bulletins 43: 9–19.
  • Kolari P., Pumpanen J., Rannik U., Ilvesniemi H., Hari P., Berninger F. 2004. Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology 10: 1106–1119. http://dx.doi.org/10.1111/j.1529-8817.2003.00797.x
  • Kowalik S., Krzaklewski W., Wójcik J. 1999. Skuteczność neutralizacji toksycznie kwaśnych gruntów na zwałowisku zewnętrznym KWB „Bełchatów”. Inżynieria Środowiska 4: 395–410.
  • Krzaklewski W. 2005. Rekultywacja w KWB „Bełchatów” – zamierzenia, stan i perspektywy. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej 112, Konferencje 44: 411–421.
  • Law B.E., Sun O.J., Campbell J., Van Tuyl S., Thornton P.E. 2003. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology 9: 510–524. http://dx.doi.org/10.1046/j.1365-2486.2003.00624.x
  • Litton C.M., Raich J.W., Ryan M.G. 2007. Carbon allocation in forest ecosystems. Global Change Biology 13: 2089–2109. http://dx.doi.org/10.1111/j.1365-2486.2007.01420.x
  • Lorenz K., Lal R. 2010. Carbon Sequestration in Forest Ecosystems. Springer Science+Business Media B.V. Dordrecht, Heidelberg, London, New York.
  • Mund M., Kummetz E., Hein M., Bauer G.A., Schulze E.D. 2002. Growth and carbon stocks of a spruce forest chronosequence in central Europe. Forest Ecology and Management 171: 275–296. http://dx.doi.org/10.1016/S0378-1127(01)00788-5
  • Muukkonen P., Mäkipää R., 2006. Biomass equations for European trees: addendum. Silva Fennica 40: 763–773. http://dx.doi.org/10.14214/sf.475
  • Oleksyn J., Reich P.B., Chalupka W., Tjoelker M.G. 1999. Differential above- and below-ground biomass accumulation of European Pinus sylverstris populations in a 12-year-old provenance experiment. Scandinavian Journal of Forest Research 14: 7–17. http://dx.doi.org/10.1080/02827589908540804
  • Oleksyn J., Reich P.B., Rachwal L., Tjoelker M.G., Karolewski P. 2000. Variation in aboveground net primary production of diverse European Pinus sylvestris populations. Trees 14: 415–421. http://dx.doi.org/10.1007/PL00009775
  • Oleksyn J., Reich P.B., Zytkowiak R., Karolewski P., Tjoelker M.G. 2002. Needle nutrients in geographically diverse Pinus sylvestris L. populations. Annals of Forest Science 59: 1–18. http://dx.doi.org/10.1051/forest:2001001
  • Oleksyn J., Reich P.B., Zytkowiak R., Karolewski P., Tjoelker M.G. 2003. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia 136: 220–235. http://dx.doi.org/10.1007/s00442-003-1265-9
  • Ovington J.D. 1957. Dry-matter production by Pinus sylvestris L. Annals of Botany 21: 287–314.
  • Pająk M., Krzaklewski W. 2007. Selected physical properties of initial soils on the outside spoil bank of the Bełchatów brown coal mine. Journal of Forest Science 53: 308–313.
  • Pensa M., Jalkanen R., Liblik V. 2007. Variation in Scots pine needle longevity and nutrient conservation in different habitats and latitudes. Canadian Journal of Forest Research 37: 1599–1604. http://dx.doi.org/10.1139/X07-012
  • Pietrzykowski M., Krzaklewski W. 2007. An assessment of energy efficiency in reclamation to forest. Ecological Engineering 30: 341–348. http://dx.doi.org/10.1016/j.ecoleng.2007.04.003
  • Pietrzykowski M., Socha J. 2011. An estimation of Scots pine (Pinus sylvestris L.) ecosystem productivity on reclaimed post-mining sites in Poland (central Europe) using of allometric equations. Ecological Engineering 37: 381–386. http://dx.doi.org/10.1016/j.ecoleng.2010.10.006
  • Pietrzykowski M., Socha J., Krzaklewski W. 2009. Perspektywy pozyskania energii z biomasy drzewostanów na zrekultywowanym zwałowisku zewnętrznym KWB “Bełchatów”. Górnictwo i Geoinżynieria 33: 373–381.
  • Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P., Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30–50. http://dx.doi.org/10.1111/j.1469-8137.2011.03952.x
  • Portsmuth A., Niinemets Ü., Truus L., Pensa M. 2005. Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age. Canadian Journal of Forest Research 35: 2346–2359. http://dx.doi.org/10.1139/x05-155
  • Pregitzer K.S., Euskirchen E.S. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology 10: 2052–2077. http://dx.doi.org/10.1111/j.1365-2486.2004.00866.x
  • Řehounková K., Prach K. 2008. Spontaneous vegetation succession in gravel-sand pits: a potential for restoration. Restoration Ecology 16: 305–312. http://dx.doi.org/10.1111/j.1526-100X.2007.00316.x
  • Reich P.B. 2011. Taking stock of forest carbon. Nature Climate Change 1: 346–347. http://dx.doi.org/10.1038/nclimate1233
  • Reich P.B., Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the USA 101: 11001–11006. http://dx.doi.org/10.1073/pnas.0403588101
  • Reich P.B., Oleksyn J., Modrzynski J., Tjoelker M.G. 1996. Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiology 16: 643–647. http://dx.doi.org/10.1093/treephys/16.7.643
  • Shrestha R.K., Lal R. 2006. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environment International 32: 781–796. http://dx.doi.org/10.1016/j.envint.2006.05.001
  • Smith J. 2002. Afforestation and reforestation in the clean development mechanism of the Kyoto Protocol implications for forests and forest people. International Journal of Global Environmental Issues 2: 322–343. http://dx.doi.org/10.1504/IJGENVI.2002.002406
  • Świtoniak M., Hulisz P., Kałucka I., Różański S. 2011. Rola monokultur sosnowych w kształtowaniu zasobów węgla organicznego w glebach zwałowiska zewnętrznego KWB Bełchatów. Roczniki Gleboznawcze 62: 395–405.
  • Świtioniak M., Hulisz P., Różański S., Kałucka I. 2013. Soils of the external dumping ground of the Bełchatów open-cast lignite mine. In: Technogenic soils of Poland. Charzyński P., Hulisz P., Bednarek R. (eds). Polish Society of Soil Science, Toruń, pp. 255–274.
  • Ter-Mikaelian M.T., Korzukhin M.D. 1997. Biomass estimations for 65 North American tree species. Forest Ecology and Management 97: 1–24. http://dx.doi.org/10.1016/S0378-1127(97)00019-4
  • Uri V., Varik M., Aosaar J., Kanal A., Kukumägi M., Lõhmus K. 2012. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. Forest Ecology and Management 267: 117–126. http://dx.doi.org/10.1016/j.foreco.2011.11.033
  • Ussiri D.A.N., Lal R. 2005. Carbon sequestration in reclaimed minesoils. Critical Reviews in Plant Sciences 24: 151–165. http://dx.doi.org/10.1080/07352680591002147
  • Vanninen P., Mäkelä A. 2005. Carbon budget for Scots pine trees: effects of size, competition and site fertility on growth allocation and production. Tree Physiology 25: 17–30. http://dx.doi.org/10.1093/treephys/25.1.17
  • Vanninen P., Ylitalo H., Sievänen R., Mäkelä A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10: 231–238.
  • Vose J.M., Dougherty P.M., Long J.N., Smith F.W., Gholz H.L., Curran P.J. 1994. Factors influencing the amount and distribution of leaf area of pine stands. Ecological Bulletins 43: 102–114.
  • Wirth C., Schulze E.D., Kusznetova V., Milyukova I., Hardes G., Siry M., Schulze B., Vygodskaya N.N. 2002. Comparing the influence of site quality, stand age, fire and climate on aboveground tree production in Siberian Scots pine forests. Tree Physiology 22: 537–552. http://dx.doi.org/10.1093/treephys/22.8.537
  • Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4: 2–63.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bb7406fa-a92c-4c56-b18f-371250cb367c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.