PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 5 |

Tytuł artykułu

Biological value of Eruca sativa Mill. leaves under the different plant nutrition by nitrogen and potassium

Treść / Zawartość

Warianty tytułu

PL
Wartość biologiczna liści Eruca sativa Mill. pod wpływem zróżnicowanego żywienia roślin azotem i potasem

Języki publikacji

EN

Abstrakty

EN
Vegetables have a significant place in the healthy eating pyramid. It is recommended that vegetables should be consumed as often as possible to provide nutritional and biologically active substances. The aim of the present study was to determine the biological value of the leaves of rocket as affected by different regimes of plant nitrogen and potassium nutrition. Plants were grown in a peat-based medium under greenhouse conditions. After harvest, the contents of L-ascorbic acid, chlorophyll, flavonoids, glucosinolates and essential oil were determined in the rocket leaves. The average content of chlorophyll a + b per 100 g of rocket fresh biomass was 1.16 mg, while the L-ascorbic acid concentration – 92.66 mg. 100 g of dried rocket leaves contained on average 0.84 g of flavonoids and 0.15 ml of essential oil, while 1 g of dry plant material was characterized by the presence of 10.56 μmol of glucosinolates, on average. Potassium chloride proved to be an interesting source of potassium; its application significantly increased the concentration of glucosinolates in the rocket leaves. However, this form of potassium was not found to have a significant effect on the accumulation of L-ascorbic acid, chlorophyll, flavonoids, and essential oil. An increased rate of nitrogen contributed to a decrease in the content of L-ascorbic acid and glucosinolates. The presented results show that it is possible to modify the chemical composition of rocket leaves by using an appropriate system of plant mineral nutrition.
PL
Warzywa zajmują znaczące miejsce w piramidzie zdrowego żywienia. Zaleca się jak najczęstsze ich spożywanie w celu dostarczenia substancji odżywczych i biologicznie aktywnych. Celem prezentowanych badań było określenie wartości biologicznej liści rokietty siewnej pod wpływem zróżnicowanego żywienia mineralnego roślin azotem i potasem. Rośliny uprawiano w podłożu torfowym, w warunkach szklarniowych. Po zbiorze w liściach rokietty określono zawartość kwasu L-askorbinowego, chlorofilu, flawonoidów, glukozynolanów i olejku eterycznego. Liście rokietty okazały się cennym źródłem bioskładników i można je uznać za istotne składniki żywności funkcjonalnej. Średnia zawartość chlorofilu a + b w 100 g świeżej biomasy rokietty wynosiła 1,16 mg, a koncentracja kwasu L-askorbinowego – 92,66 mg. 100 g wysuszonych liści rokietty zawierało średnio 0,84 g flawonoidów i 0,15 ml olejku eterycznego, a 1 g suchego materiału roślinnego charakteryzował się średnio obecnością 10,56 μmol glukozynolanów. Interesującym źródłem potasu okazał się chlorek potasu, którego aplikacja istotnie podnosiła koncentrację glukozynolanów w liściach rokietty. Nie stwierdzono jednak istotnego wpływu postaci potasu na gromadzenie kwasu L-askorbinowego, chlorofilu, flawonoidów i olejku eterycznego. Podwyższona dawka azotu przyczyniła się do zmniejszenia zawartości kwasu L-askorbinowego i glukozynolanów. Przedstawione wyniki badań wskazują, że istnieje możliwość modyfikacji składu chemicznego liści rokietty przy zastosowaniu odpowiedniego schematu żywienia mineralnego roślin.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

5

Opis fizyczny

p.41-53,ref.

Twórcy

  • Department of Vegetable Crops and Medicinal Plants, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Lublin, Poland

Bibliografia

  • Acikgoz, F.E., (2011). Mineral, vitamin C and crude protein contents in kale (Brassica oleraceae var. acephala) at different harvesting stages. Afr. J. Biotech., 10, 17170–17174.
  • Aires, A., Fernandes, C., Carvalho, R., Bennett, R.N., Saavedra, M.J., Rosa, E.A.S. (2011). Seasonal effects on bioactive compounds and antioxidant capacity of six economically important Brassica vegetables. Molecules, 16, 6816–6832.
  • Antonious, G.F, Bomford, M., Vincelli, P. (2009). Screening Brassica species for glucosinolate content. J. Environ. Sci. Health., 44, 311–316.
  • Blaževic, I., Mastelic, J. (2008). Free and bound volatiles of rocket (Eruca sativa Mill.). Flav. Fragr. J., 23, 278–285.
  • Bukhsh, E., Malik, S.A., Ahmad, S.S. (2007). Estimation of nutritional value and trace elements 21 content of Carthamus oxyacantha, Eruca sativa and Plantago ovata. Pak. J. Bot. 39, 4, 1181–1187.
  • Chun, J.-H., Arasu, M.V., Lim, Y.-P., Kim, S.-J. (2013). Variation of major glucosinolates in different varieties and lines of rocket salad. Hort. Environ. Biotechnol., 54, 206–213.
  • De Nicola, G.R., Blazevic, I., Montaut, S., Rollin, P., Mastelic, J., Iori, R., Tatibouet, A. (2011). Glucosinolate distribution in aerial parts of Degenia velebitica. Chem. Biodivers,. 11, 2090–2096.
  • De Pascale, S., Maggioa, A., Pernice, R., Fogliano, V., Barbieri, G. (2007). Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris. Europ. J. Agron., 26, 418–424.
  • Fahey, J.W., Zalcmann, A.T., Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 5–51.
  • Falk, K.J., Vigel, C., Textor, S., Bartram, S., Hick, A., Pickett, J.A., Gerhenzon, J. (2004). Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of chain elongation cycle in Eruca sativa. Phytochemistry, 65, 1073–1084.
  • Eruca sativa Mill.: Phytochemical profile and antimicrobial properties of rocket leafy salads. Planta Med., 76, doi: 10.1055/s-0030-1264205.
  • Graser, G., Schneider, B., Oldham, N.J., Gershenzon, J., (2000). The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Arch. Biochem. Biophys. 378, 411–419.
  • Hassan, F.U., Manaf, A., Qadir, G., Basra, S.M.A. (2007). Effects of sulphur on seed yield, oil, protein and glucosinolates of canola cultivars. Int. J. Agri. Biol., 9, 504–508.
  • Kadivec, M., Kopjar, M., Žnidarčič, D., Požrl, T. (2015). Potential of eggplant peel as by-product. Acta Alimen. Hung., 44, 126–131.
  • Kamga, R.T., Kouame, C., Atangana, A.R., Chagomoka, T., Ndango, R. (2013). Nutritional evaluation of five African indigenous vegetables. J. Hort. Res., 21, 99–106.
  • Kim, S.-J., Ishii, G. (2006). Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci. Plant Nutr., 52, 394–400.
  • Kopeć, A., Piątkowska, E., Bieżanowska-Kopeć, R., Pysz, M., Koronowicz, A., Kapusta-Duch, J., Smoleń, S., Rakoczy, R., Skoczylas, Ł., Leszczyńska, T., Ledwożyw-Smoleń, I. (2015). Effect of lettuce biofortified with iodine by soil fertilization on iodine concentration in various tissues and selected biochemical parameters in serum of Wistar rats. J. Funct. Foods, 14, 479–486.
  • Khoobchandani, M., B.K. Ojeswi, B.K., Ganesh, N., Srivastava, M.M., Gabbanini, S., Matera, R., Iori, R., Valgimigli, L. (2010). Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: Comparison with various aerial and root plant extracts. Food Chem. 120, 217–224.
  • Kopsell, D.A., Kopsell, D.E., Lefsrud, M. Curran-Celentano, J., Dukach, L.E. (2004). Variation in lutein, β-caritene, and chlorophyll concentrations among Brassica oleracea cultigens and seasons. Hort. Sci., 39, 361–364.
  • Lisiewska, Z., Kmiecik, W., Korus, A. (2006). Content of vitamin C, carotenoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. J. Food Comp. Analys., 19, 134–140.
  • Liu, J.-Y., Chen, X.-X., Tang, S.C.-W., Lao, L.-X., Sze, S. C.-W., Lee, K.-F., Zhang, K.Y.-B. (2015). Edible plants from traditional Chinese medicine is a promising alternative for the management of diabetic nephropathy. J. Funct. Foods, 14, 12–22.
  • Mastelić, J., Jerković, I., Blažević, I., Radonić, A., Krstulović L. (2008). Hydrodistillation– adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials. Talanta 76, 885–891.
  • Michael, H.N., Shafik, R.E., Rasmy, G.E. (2011). Studies on the chemical constituents of fresh leaf of Eruca sativa extract and its biological activity as anticancer agent in vitro. J. Med. Plants Res., 5, 1184–1191.
  • Michałojć, Z., Dzida, K. (2012). Yielding and biological value of sweet pepper fruits depending on foliar feeding using calcium. Acta Sci. Pol., Hortorum Cultus, 11, 255–264.
  • Mitić, V., Jovanović, V.S., Dimitrijević, M., Cvetković, J., Petrović, G., Stojanović, G. (2013). Chemometric analysis of chlorophyll a, b and carotenoid content in green leafy vegetables. Biol. Nyss., 4, 49–55.
  • Narits, L. (2011). Effect of top-fertilizing of raw protein and glucosinolates content of winter turnip rape. Agron. Res., 9, 451–454.
  • Ng, X.N., Chye, F.Y., Mohd Ismail, A. (2012). Nutritional profile and antioxidative properties of selected tropical wild vegetables. Internat. Food Res. J., 19, 1487–1496.
  • Nurzyńska-Wierdak, R. (2009). Growth and yield of garden rocket (Eruca sativa Mill.) affected by nitrogen and potassium fertilization. Acta Sci. Pol., Hortorum Cultus, 8, 23–33.
  • Nurzyńska-Wierdak, R. (2015). Protein nutritional value of rocket leaves and possibilities of its modification during plant growth. Turk. J. Agric. For., 39 (in press).
  • Nurzyńska-Wierdak, R., Dzida, K., Rożek, E., Jarosz, Z. (2012). The effect of nitrogen and potassium on N-NH4 and N-NO3 accumulation and nutrient contents in rocket (Eruca sativa Mill.) leaves. Acta Sci. Pol., Hortorum Cultus, 11, 211–221.
  • Omirou, M., Papastefanou, C., Katsarou, D., Papastylianou, I., Passam, H.C., Ehaliotis, C., Papadopoulou, K.K. (2012). Relationships between nitrogen, dry matter accumulation and glucosinolates in Eruca sativa Mills. The applicability of the critical N-NO3 levels approach. Plant Soil, 354, 347–358.
  • Ortega, R.M. (2006). Importance of functional foods in the Mediterranean diet. Pub. Health Nutr., 9, 1136–1140.
  • Patricia, O., Zoue, L., Megnanou, R.-M., Doue, R., Niamke, S. (2014). Proximate composition and nutritive value of leafy vegetables consumed in Northern Côte d’Ivoire. Eur. Sci. J., 10, 212–227.
  • Polat, U. (2010). The effects on metabolism of glucosinolates and theirs hydrolysis products. J. Biol. Environ. Sci., 4, 39–42.
  • Polish Pharmacopoeia VIII Romojaro, A., Ángeles Botella, A., Obón, C., Pretel, M.T. (2013). Nutritional and antioxidant properties of wild edible plants and their use as potential ingredients in the modern diet. Int. J. Food Sci. Nutr., 64, 944–952.
  • Saeed, M.K., Anjum, S., Ahmad, I., Ali, S., Zia, A., Ali, S. (2012). Nutritional facts and free radical scavenging activity of turnip (Brassica rapa) from Pakistan. World Appl. Sci. J., 19, 3, 370–375.
  • Singh, B., Singh, J., Kumar, A., Yadav, Y.P., Singh, S. (1999). Response of Brassicas to sulphur for yield. Indian J. Agric. Sci., 69, 427–429.
  • Sinkovič, L., Demšar, L., Žnidarčič, D., Vidrih, R., Hribar, J., Treutter, D. (2015). Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chem., 166, 507–513.
  • Smatanovà, M., Richter R., Hlušek J. (2004). Spinach and red pepper response to nitrogen and sulphur fertilization. Plant Soil Environ. 50, 303–308.
  • Srianta, I., Arisasmita, J.H., Patria, H.D., Epriliati, I. (2012). Ethnobotany, nutritional composition and DPPH radical scavenging of leafy vegetables of wild Paederia foetida and Erechtites hieracifolia. Internat. Food Res. J., 19, 245–250.
  • Strgar, J., Pilih, M., Pogačnik, M., Žnidarčič, D. (2013). Knowledge of medicinal plants and their uses among secondary and grammar school students: a case study from Slovenia. Arch. Biol. Sci., 65, 1123–1129.
  • Tassi, E.M.M., Amaya-Farfan, J. (2008). Carotenoid uptake by human triacylglycerol-rich lipoproteins from the green leafy vegetable Eruca sativa. Ecol. Food Nutr. 47, 1, 77–94.
  • Vardavas, C.I., Majchrzak, D., Wagner, K.-H., Elmadfa, I., Kalatos, A. (2006). The antioxidant and phylloquinone content of wildly grown greens in Recte. Food Chem., 99, 813–821.
  • Vig, A.P., Rampal, G., Thind, T.S., Arora, S. (2009). Bio-protective effects of glucosinolates – A review. LWT – Food Sci. Technol., 42, 1561–1572.
  • Villatoro-Pulido, M., Font, R., Saha, S., Obregón-Cano, S., Anter J. , Muńoz-Serrano, A., De Haro-Bailón, A., Alonso-Moraga, A., Del Río- Celestino, M. (2012). In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane. Food Chem. Toxicol. 50, 1384–1392.
  • Vivek, P., Prabhakaran, S., Shankar, S.R. (2013). Assessment of nutritional value in selected edible greens based on the chlorophyll content in leaves. Res. Plant Biol., 3, 45–49.
  • Vyas, P., Prakash, S., Shivanna, K.R. (1995). Production of wide hybrids and backcross progenies between Diplotaxis erucoides and crop brassicas. Theor. Appl. Genet., 90, 549–553.
  • Zhang, H., Schonhof, I., Krumbein, A., Gutezeit, B., Li, L., Stützel, H., Schreiner, M. (2008). Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa ssp. rapifera L.). J. Plant Nutr. Soil Sci. 171, 255–265.
  • Žnidarčič, D., Ban, D., Šircelj, H. (2011). Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem., 129, 1164–1168.
  • Žnidarčič, D., Šircelj, H., Kacjan-Maršić, N. (2013). The influence of temperature and storage time on Cantaloupe melons physicochemical quality. Ital. J. Food Sci., 25, 459-464.
  • Yadav, R.K., Kalia, P., Kumar, R., Jain, V. (2013). Antioxidant and nutritional activity studies of green leafy vegetables. Int. J. Agric. Food Sci. Technol., 4,. 707–712.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-baa982bb-344a-4223-b743-23cfac76ac6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.