Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 27 | 1 |
Tytuł artykułu

Fruit biomechanics based on anatomy: a review

Treść / Zawartość
Warianty tytułu
Języki publikacji
Fruit biomechanics is needed for quality determination, multiscale modelling and engineering design of fruit processes and equipments. However, these determined fruit biomechanics data often have obvious differences for the same fruit or tissue. In order to investigate it, the fruit biomechanics based on anatomy was reviewed in this paper. First, the anatomical characteristics of fruit biomaterials were described at the macroscopic ‘tissue’ level and microscopic ‘cellular’ level. Subsequently, the factors affecting fruit biomechanics based on anatomy and the relationships between fruit biomechanics, texture and mechanical damage were summarised according to the published literature. Fruit biomechanics is mainly affected by size, number and arrangement of cells, quantity and volume of intracellular spaces, structure, thickness, chemical composition and permeability of cell walls, and pectin degradation level and turgor pressure within cells based on microanatomy. Four test methods and partial determined results of fruit biomechanics were listed and reviewed. The determined mechanical properties data of fruit are only approximate values by using the existing four test methods, owing to the fruit biomaterials being non-homogeneous and living. Lastly, further aspects for research on fruit biomechanics were proposed for the future.
Słowa kluczowe
Opis fizyczny
  • School of Mechanics and Power Engineering, Henan Polytechnic University, 454003 Jiaozuo, China
  • School of Mechanics and Power Engineering, Henan Polytechnic University, 454003 Jiaozuo, China
  • Institute of Agricultural Engineering, Jiangsu University, 212013 Zhenjiang, China
  • Institute of Agricultural Engineering, Jiangsu University, 212013 Zhenjiang, China
  • Institute of Agricultural Engineering, Jiangsu University, 212013 Zhenjiang, China
  • Institute of Agricultural Engineering, Jiangsu University, 212013 Zhenjiang, China
  • Abdul Khalil H., Siti Alwani M., and Mohd Omar A., 2006. Chemical composition, anatomy, lignin distribution and cell wall structure of malaysian plant waste fibers. BioResour., 1, 220-232.
  • Acican T., Alibas K., and Ozelkok I., 2007. Mechanical damage to apples during transport in wooden crates. Biosys. Eng., 96, 239-248.
  • Ahmadi E., Ghassemzadeh H.R., Sadeghi M., Moghaddam M., and Neshat S.Z., 2010. The effect of impact and fruit properties on the bruising of peach. J. Food Eng., 97, 110-117.
  • Alamar M.C., Vanstreels E.,Oey M.L., Moltó E.,and Nicolai B.M., 2008. Micromechanical behaviour of apple tissue in tensile and compression tests: Storage conditions and cultivar effect. J. Food Eng., 86, 324-333.
  • Ali M.B. and Abu-Goukh A., 2005. Changes in pectic substances and cell wall degrading enzymes during tomato fruit ripening. Univ. Khartoum J. Agric. Sci., 13, 202-223.
  • Allende A., Desmet M., Vanstreels E., Verlinden B.E., and Nicolai B.M., 2004. Micromechanical and geometrical properties of tomato skin related to differences in puncture injury susceptibility. Postharvest Biol. Technol., 34, 131-141.
  • Barbosa-Canovas G., Juliano P., and Peleg M., 2006. Food Engineering. EOLSS Press, Oxford, UK.
  • Bargel H. and Neinhuis C., 2005. Tomato fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J. Exp. Bot., 56, 1049-1060.
  • Barriga-Tellez L.M., Garnica-Romo M.G., Aranda-Sanchez J.I., and Correa G., 2011. Nondestructive tests for measuring the firmness of guava fruit stored and treated with methyl jasmonate and calcium chloride. Int. J. Food Sci. Technol., 46, 1310-1315.
  • Blewett J., Burrows K., and Thomas C., 2000. A micromanipulation method to measure the mechanical properties of single tomato suspension cells. Biotechnol. Letters, 22, 1877-1883.
  • Bourne M.C., 2002. Food Texture and Viscosity: Concept and measurement. Academic Press, New York, USA.
  • Brummell D.A. and Harpster M.H., 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biol., 47, 311-339.
  • Cardenas Weber M., Storoshine R.L., Haghighi K., and EdanY., 1991. Melon material properties and finite element analysis of melon compression with application to robot gripping. Trans. ASAE, 34, 920-929.
  • Chiarini F.E. and Barboza G.E., 2009. Fruit anatomy of species of solanum sect. Acanthophora (solanaceae). Flora – Morphology, Distribution, Functional Ecology of Plants, 204, 146-156.
  • Cutler D.F., Botha T., Botha C.E.J., and Stevenson D.W., 2008. Plant Anatomy: An Applied Approach. Wiley-Blackwell Press, Malden, MA, USA.
  • Cybulska J., Konstankiewicz K., Zdunek A., and Skrzypiec K., 2010a. Nanostructure of natural and model cell wall materials. Int. Agrophys., 24, 107-114.
  • Cybulska J., Vanstreels E., Ho Q.T., Courtin C.M., Craeyveld V.V., Nicolai B., Zdunek A., and Konstankiewicz K., 2010b. Mechanical characteristics of artificial cell walls. J. Food Eng., 96, 287-294.
  • Cybulska J., Zdunek A., and Konstankiewicz K., 2011. Calcium effect on mechanical properties of model cell walls and apple tissue. J. Food Eng., 102, 217-223.
  • Desmet M. and Lammertyn J., 2004. The relative influence of stem and fruit properties on stem puncture injury in tomatoes. Postharvest Biol. Technol., 33, 101-109.
  • Desmet M., Lammertyn J., Verlinden B.E., Nicola B.M., 2002. Mechanical properties of tomatoes as related to puncture injury susceptibility. J. Texture Stud., 33, 415-429.
  • Devaux M.F., Barakat A., Robert P., Bouchet B., Guillon F.,Navez B., and Lahaye M., 2005. Mechanical breakdown and cell wall structure of mealy tomato pericarp tissue. Postharvest Biol. Technol., 37, 209-221.
  • Ding Z., Tian S., Wang Y., Li B., Chan Z., Han J., and Xu Y., 2006. Physiological response of loquat fruit to different storage conditions and its storability. Postharvest Biol. Technol., 41, 143-150.
  • Dintwa E., Jancsók P., Mebatsion H.K., Verlinden B., Verboven P., Wang C.X., Thomas C.R., Tijskens E., Ramon H., and Nicolai B., 2011. A finite element model for mechanical deformation of single tomato suspension cells. J. Food Eng., 103, 265-272.
  • Fidelibus M.W., Teixeira A.A., and Davies F.S., 2002. Mechanical properties of orange peel and fruit treated pre-harvest with gibberellic acid. Am. Soc. Agric. Eng., 45, 1057-1062.
  • Fischer M., Wegryzn T.F., Hallett I.C., and Redgwell R.J., 1996. Chemical and structural features of kiwifruit cell walls: Comparison of fruit and suspension-cultured cells. Carbohydrate Res., 295, 195-208.
  • Garcia-Ramos F.J., Valero C., Homer I., Ortiz-Ca avate J., and Ruiz-Altisent M., 2005. Non-destructive fruit firmness sensors: A review. Spanish J. Agric. Res., 3, 61-73.
  • Genard M., Bertin N., Borel C., Bussieres P., Gautier H., Habib R., Lechaudel M., Lecomte A., Lescourret F., and Lobit P., 2007. Towards a virtual fruit focusing on quality: Modelling features and potential uses. J. Exp. Botany, 58, 917-928.
  • George J., 2000. Structure-property relationships in biological materials. (Ed. E. Manuel), Pergamon Materials, 4, 3-16.
  • Goyal R.K., Kingsly A.R.P., Kumar P., and Walia H., 2007. Physical and mechanical properties of canola fruits. J. Food Eng., 82, 595-599.
  • Guine R.P.F., Andrade S., Correia A.C., Jordao A.M., Lopes A.D., and Ferreira D., 2011. Evaluation of textural properties in apples of regional varieties. Int. J. Food Prop., 14, 331-338.
  • Gunness P., Kravchuk O., Nottingham S.M., Darcy B.R., and Gidley M.J., 2009. Sensory analysis of individual strawberry fruit and comparison with instrumental analysis. Postharvest Biol. Techn., 52, 164-172.
  • Haciseferogullari H., Gezer I., Ozcan M.M., and MuratAsma B., 2007. Post-harvest chemical and physical-mechanical properties of some apricot varieties cultivated in turkey. J. Food Eng., 79, 364-373.
  • Harker F.R., White A.,Gunson F.A., Hallett I.C.,and DeSilva H.N., 2006. Instrumental measurement of apple texture:Acomparison of the single-edge notched bend test and the penetrometer. Postharvest Biol. Technol., 39, 185-192.
  • Hetzroni A., Vana A., and Mizrach A., 2011. Biomechanical characteristics of tomato fruit peels. Postharvest Biol. Technol., 59, 80-84.
  • Hiller S., Bruce D., and Jeronimidis G., 1996. A micropenetration technique for mechanical testing of plant cell walls. J. Texture Stud., 27, 559-587.
  • Jaitrong S., Rattanapanone N., Boonyakiat D., and Baldwin E., 2005. A comparison of anatomical changes between normal and chilling injury longan fruit pericarp. Acta Hort., 682, 1565-1570.
  • Jamilah B., Shu C.E., Kharidah M., Dzulkifly M.A., and Noranizan A., 2011. Physico-chemical characteristics of red pitaya peel. Int. Food Res. J., 18, 279-286.
  • Kabas O. and Ozmerzi A., 2008. Determining the mechanical properties of cherry tomato varieties for handling. J. Texture Stud., 39, 199-209.
  • Karcz J., Burczyk J., Zych M., Stolarczyk A., Terminska-Pabis K., Banas A., and Kubeczka K-H., 2008. Structure and phytochemistry of the fruit of Hacquetia epipactis (Scop.) DC. (Saniculoideae, Apiaceae). Embryological Conf., May 14-17, Wisła, Poland.
  • Khan A., 2001. Plant Anatomy and Physiology. Kalpaz Press, New Delhi, India.
  • Kiani Deh Kiani M., Maghsoudi H., and Minaei S., 2009. Determination of Poisson's ratio and Young's modulus of red bean grains. J. Food Process Eng., 10, 1745-1756.
  • Kilickan A. and Guner M., 2008. Physical properties and mechanical behavior of olive fruits (Olea europaea L.) under compression loading. J. Food Eng., 87, 222-228.
  • Kim G.W., Do G.S., Bae Y., and Sagara Y., 2008. Analysis of mechanical properties of whole apple using finite element method based on three-dimensional real geometry. Food Sci. Technol. Res., 14, 329-336.
  • Kim I., 2003. Sequential changes of pericarp ultrastructure in citrus Reticulata hesperidium. Korean J. Electron Microscopy, 33, 79-92.
  • Kitthawee U., Pathaveerat S., Srirungruang T., and Slaughter D., 2011. Mechanical bruising of young coconut. Biosys. Eng., 109, 211-219.
  • Konstankiewicz K. and Zdunek A., 2001. Influence of turgor and cell size on the cracking of potato tissue. Int. Agrophysics, 15, 27-30.
  • Li C., Ma X., and Lei B., 2006. Study on the relationship between mechanical and theological properties and ripe degree of tomato. J. Agric. Mech. Res., 30, 167-169.
  • Li Z., Li P., and Liu J., 2011. Physical and mechanical properties of tomato fruits as related to robot's harvesting. J. Food Eng., 103, 170-178.
  • Li Z., Liu J., and Li P., 2010a. Relationship between mechanical property and damage of tomato during robot harvesting. Trans. Chinese SAE, 26, 112-116.
  • Li Z.G., Li P.P., and Liu J.Z., 2010b. Effect of tomato internal structure on its mechanical properties and degree of mechanical damage. African J. Biotechnol., 9, 1816-1826.
  • Linden V.V., Ndaka Sila D., Duvetter T., Baerdemaeker J.D., and Hendrickx M., 2008. Effect of mechanical impactbruising on polygalacturonase and pectinmethylesterase activity and pectic cell wall components in tomato fruit. Postharvest Biol. Technol., 47, 98-106.
  • Linden V.V., Scheerlinck N., Desmet M., and Baerdemaeker J.D., 2006. Factors that affect tomato bruise development as a result f mechanical impact. Postharvest Biol. Technol., 42, 260-270.
  • Liu J., Li P., and Li Z., 2008. Experimental study on mechanical properties of tomatoes for robotic harvesting. Trans. Chinese SAE, 24, 66-70.
  • Lu R., Srivastava A., and Ababneh H., 2006. Finite element analysis and experimental evaluation of bioyield probes for measuring apple fruit firmness. Trans. ASAE, 49, 123-131.
  • Martin J.N., 2010. Botany for Agricultural Students. Nabu Press, New York, USA.
  • Marzinek J. and Mourao K.S.M., 2003. Morphology and anatomy of the fruit and seed in development of Chorisia speciosa A. St.-Hil.-Bombacaceae. Revista Brasileira de Botanica, 26, 23-34.
  • Matas A., Lopez-Casado G., Cuartero J., and Heredia A., 2005. Relative humidity and temperature modify the mechanical properties of isolated tomato fruit cuticles. Am. J. Botany, 92, 462-468.
  • Mebatsion H.K., Verboven P., Ho Q.T., Verlinden B., Nicolac B., 2008. Modelling fruit (micro) structures, why and how? Trends Food Sci. Technol., 19, 59-66.
  • Mohammadi-Aylar S., Jamaati-e-Somarin S., and Azimi J., 2010. Effect of stage of ripening on mechanical damage in tomato fruits. Am.-Eurasian J. Agric. Environ. Sci., 9, 297-302.
  • Narain N., Holschuh H.J., Bora P.S., Vasconcelos M.A., and Da S., 2001. Physical and chemical composition of carambola fruit at three stages of maturity. Ciencia Tecnología Alimentaria, 3, 144-148.
  • Owolarafe O., Olabige M., and Faborode M., 2007. Physical and mechanical properties of two varieties of fresh oil palm fruit. J. Food Eng., 78, 1228-1232.
  • Ozturk I., Ercisli S., Kalkan F., and Demir B., 2009. Some chemical and physico-mechanical properties of pear cultivars. African J. Biotechnol., 8, 687-693.
  • Pallottino F., Costa C., Menesatti P., and Moresi M., 2011. Assessment of the mechanical properties of tarocco orange fruit under parallel plate compression. J. Food Eng., 103, 308-316.
  • Pieczywek P.M., Zdunek A., and Umeda M., 2011. Study on parameterisation of plant tissue microstructure by confocal microscopy for finite elements modelling. Computers and Electronics in Agriculture, 78(1), 98-105.
  • Pitt R. and Chen H., 1983. Time-dependent aspects of the strength and rheology of vegetative tissue. Trans. ASAE, 26, 1275-1280.
  • Pitts M.J., Davis D.C., and Cavalieri R.P., 2008. Three-point bending: An alternative method to measure tensile properties in fruit and vegetables. Postharvest Biol. Technol., 48, 63-69.
  • Qing Y., Li C., Huang H., and Cao Y., 2011. Finite analysis on mechanical properties of longan. Trans. Chinese SAM, 42, 143-147.
  • Rancic D., Quarrie S., and Pecinar I., 2010. Anatomy of tomato fruit and fruit pedicel during fruit development. Microscopy: Sci., Technol., Appl. Education, 2, 851-861.
  • Ratule M., Osman A., Saari N., and Ahmad S., 2007. Microstructure of peel cell wall and selected physico-chemical characteristics of berangan banana (Musa cv. Berangan [AAA]) ripened at high temperature. Asia Pacific J. Molecular Biol. Biotechnol., 15, 8-13.
  • Romanov M.S., Bobrov A.V.F., Wijesundara D.,and Romanova E.S., 2011. Pericarp development and fruit structure in borassoid palms (Arecaceae-Coryphoideae-Borasseae). Ann. Botany, 108(8), 1489-1502.
  • Sadrnia H., Rajabipour A., Jafari A., Javadi A., Mostofi Y., Kafashan J., Dintwa E., and De Baerdemaeker J., 2008. Internal bruising prediction in watermelon compression using nonlinear models. J. Food Eng., 86, 272-280.
  • Sams C.E., 1999. Preharvest factors affecting postharvest texture. Postharvest Biol. Technol., 15, 249-254.
  • Singh K.K. and Reddy B.S., 2006. Post-harvest physicomechanical properties of orange peel and fruit. J. Food Eng., 73, 112-120.
  • Sirisomboon P., Kitchaiya P., Pholpho T., and Mahuttanyavanitch W., 2007. Physical and mechanical properties of Jatropha curcas L. Fruits, nuts and kernels. Biosys. Eng., 97, 201-207.
  • Soltani M., Alimardani R., Omid M., and Karaj I., 2011. Changes in physico-mechanical properties of banana fruit during ripening treatment. J. Am. Sci., 7, 14-19.
  • Souza L.A., Oliveira Oyama S.D., and Muneratto J.C., 2008. Morphology and anatomy of the developing fruit of Macfadyena unguis-cati L. A.H. Gentry, Bignoniaceae. Acta Bot. Venezuelica, 31, 1-14.
  • Vincent J.F.V., 1990. Fracture properties of plants. Advances Bot. Res., 17, 235-287.
  • Waldron K.W., Parker M.L., and Smith A.C., 2003. Plant cell walls and food quality. Compreh. Rev. Food Sci., Food Safety, 2, 128-146.
  • Wang C.X., Pritchard J., and Thomas C.R., 2006. Investigation of the mechanics of single tomato fruit cells. J. Texture Stud., 37, 597-606.
  • Wang C.X., Wang L., and Thomas C.R., 2004. Modelling the mechanical properties of single suspension cultured tomato cells. Ann. Botany, 93, 443-453.
  • Yang X. and Wang C., 2008. Relationship between mechanical properties and damage of hetao muskmelons under static compression. Trans. Chinese SAE, 24, 31-37.
  • Yurtlu Y. and Erdogan D., 2005. Effect of storage time on some mechanical properties and bruise susceptibility of pears and apples. Turkish J. Agric. Forestry Sci., 29, 469-482.
  • Zarifneshat S., Ghassemzadeh H.R., Sadeghi M., Abbaspour-Fard M.H., Ahmadi E., Javadi A., and Shervani-Tabar M.T., 2010. Effect of impact level and fruit properties on golden delicious apple bruising. Am. J. Agric. Biol. Sci., 5, 114-121.
  • Zdunek A. and Konstankiewicz K., 2004. Acoustic emission in investigation of plant tissue micro-cracking. Trans. ASAE, 47, 1171-1177.
  • Zdunek A. and Umeda M., 2005. Influence of cell size and cell wall volume fraction on failure properties of potato and carrot tissue. J. Texture Stud., 36, 25-43.
  • Zeebroeck M.V., Linden V.V., Darius P., De Ketelaere B., Ramon H., and Tijskens E., 2007a. The effect of fruit properties on the bruise susceptibility of tomatoes. Postharvest Biol. Technol., 45, 168-175.
  • Zeebroeck M.V., Van linden V., Darius P., De Ketelaere B., Ramon H., and Tijskens E., 2007b. The effect of fruit factors on the bruise susceptibility of apples. Postharvest Biol. Technol., 46, 10-19.
  • Zykwinska A., Thibault J.F., and Ralet M.C., 2008. Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydrate Polymers, 74, 957-961.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.