PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 1 |

Tytuł artykułu

Overexpression of NHX1s in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, we observed that transgenic plants overexpressing NHX1 from different organisms grew well in the presence of 200 mM NaCl and also under water deprivation, while the wild-type plants exhibited chlorosis and growth inhibition. The photosynthesis activity of five kinds of transgenic plants was higher than the wild-type plants. The leaf water potential was less negative for wild-type than for transgenic plants. Moreover, these transgenic plants accumulated more Na⁺ and K⁺ in their leaf tissue than the wild-type plants. The toxic effects of Na⁺ accumulation in the cytosol are reduced by its sequestration into the vacuole. In addition, the thermal dissipation and ROS scavenging components increased in all transgenic Arabidopsis plants compared with that in non-transgenics. The salt tolerance of transgenic plants was passed on to the offsprings to the T₅ generation. Furthermore, it should be noted that in transgenic Arabidopsis plants, overexpression of NHX1s from dicots showed higher salt and drought tolerance than that from wheat.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

1

Opis fizyczny

p.81-90,fig.,ref.

Twórcy

autor
  • Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences
autor
  • Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences
autor
  • Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences
autor
  • Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences
autor
  • Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences

Bibliografia

  • Anderson JM (1999) Insights into the grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust J Plant Physiol 26:625–639
  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na⁺/H⁺ antiporter in Arabidopsis. Science 285:1256–1258
  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H⁺ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na⁺/H⁺ antiporter. Pant J 36:229–239
  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plants cells. Biochim Biophys Acta 1465:140–151
  • Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatese proton pump. Plant Physiol Biochem 43:347–354
  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na⁺/H⁺ antiporter TNHX1 and H⁺-pyrophosphatase TVP1 improve salt and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
  • Dibrov P, Fliegel L (1998) Comparative molecular analysis of the Na⁺/H⁺ exchangers: a unified model for antiporter? FEBS Lett 424:1–5
  • Fukada-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S (2000) Colouring-enhancing protein in blue petals. Nature 407:581
  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na⁺/H⁺ antiporter from rice. Plant Cell Physiol 45:146–159
  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255
  • Hanana M, Cagnac O, Yamaguchi T, Hamdi S, Ghorbel A, Blumwald E (2007) A grape berry (Vitis vinifera L.) cation/proton antiporter is associated with berry ripening. Plant Cell Physiol 48:804–811
  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504
  • Hasaegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499
  • Inoue H, Noumi T, Tsuchiya T, Kanazawa H (1995) Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na⁺/H⁺ antiporter (NhaA) from Escherichia coli. FEBS Lett 363:264–268
  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242
  • Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant 134:508–821
  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158
  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
  • Mäster P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54
  • Mukherjee S, Kallay L, Brett CL, Rao R (2006) Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking. Biochem J 398:97–105
  • Nass R, Rao R (1999) The yeast endosomal Na⁺/H⁺ exchanger, NHX1, confers osmotolerance following acute hypertonic shock. Microbiology 145:3221–3228
  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742
  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460
  • Noh B, Spalding EP (1998) Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings. Plant Physiol 116:503–509
  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll II standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394
  • Rhodes D, Hanson AD (1993) Quatemary ammonium and tertiary sulphonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384
  • Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na⁺/H⁺ antiporter: impact of AtNHX1 on gene expression. Plant J 40:752–771
  • Sottosanto JB, Saranga Y, Blumwald E (2007) Impact of AtNHX1, a vacuolar Na⁺/H⁺ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Biol 7:18. doi:10.1186/1471-2229-18
  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527
  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The Cotton GhNHX1 gene encoding a novel putative tonoplast Na⁺/H⁺ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607
  • Yamaguchi T, Fukada-Tanaka S, Inagaki Y, Saito N, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Lida S (2001) Gene encoding the vacuolar Na⁺/H⁺ exchanger and flower coloration. Plant Cell Physiol 42:451–461
  • Yamaguchi T, Apse MP, Shi HZ, Blumwald E (2003) Topological analysis of a plant vacuolar Na⁺/H⁺ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc Natl Acad Sci USA 100:12510–12515
  • Yamamoto HY, Bugos RC, Hieber AD (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer Academic Publishers, Dordrecht, pp 293–303
  • Yeo AR (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929
  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX1 Na⁺/H⁺ antiporters in salt stress response. Plant J 30:529–539
  • Zhang HX, Blumwald E (2001) Transgenic slat-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature 19:765–768
  • Zhao FY, Wang ZL, Zhang Q, Zhao YX, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na⁺/H⁺ antiporter gene from Suaeda sala. J Plant Res 119:95–104
  • Zheng CC, Port R, Lu PZ (1998) PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and a circadian rhythm and encodes a protein with a leucine zipper motif. Plant Physiol 116:27–35
  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. CRC Crit Rev Plant Sci 16:253–277

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ba8bcebd-2c14-48e1-b481-c5881ea8b1c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.