PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Determining kinetic constants and transport efficiencies at membrane interfaces to optimize the removal/recovery of cu(II) through lulk liquid membranes containing benzoylacetone as carrier

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The removal, separation, and enrichment of heavy metals in aqueous solutions has become a prime concern over the last few decades because of both their adverse effects on the ecosystem and living organisms and their valuable resource character. This paper describes a study to optimize the simultaneous removal/ recovery of Cu(II) from aqueous solutions by bulk liquid membranes, through a facilitated countertransport mechanism using benzoylacetone as a mobile carrier and hydrochloric acid as a stripping agent (protons as counter ions), by analyzing the effect of different operational variables (carrier concentration in membrane phase, stripping agent concentration in product phase, stirring rate, and membrane phase volume) on the removal/recovery kinetics constants and on the transport efficiencies through the feed/membrane and membrane/product interfaces.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2879-2883,fig.

Twórcy

autor
  • Departamento de Ingeniería Quimica y Ambiental, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 44, 30203 Cartagena, Spain
autor
  • Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
autor
  • Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
autor
  • Departamento de Ingenieria Quimica y Ambiental, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 44, 30203 Cartagena, Spain
autor
  • Departamento de Ingeniería Quimica, Facultad de Quimica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

Bibliografia

  • 1. AWUAL M.R., YAITA T., EL-SAFTY S.A., SHIWAKU H., SUZUKI S., OKAMOTO Y. Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 221, 322, 2013.
  • 2. TOFIGHY M.A., MOHAMMADI T. Copper ions removal from water using functionalized carbon nanotubes - mullite composite as adsorbent. Mater. Res. Bull. 68, 54, 2015.
  • 3. SVERDRUP H.U., RAGNARSDOTTIR K.V., KOCA D. On modelling the global copper mining rates, market supply, copper price and the end of copper reserves. Res. Conserv. Recy. 87, 158, 2014.
  • 4. HARMSEN J.H.M., ROES A.L., PATEL M.K. The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy 50, 62, 2013.
  • 5. FLEMMING C.A., TREVORS J.T. Copper toxicity and chemistry in the environment: a review. Water Air Soil Poll. 44 (1-2), 143, 1989.
  • 6. CRISPONI G., NURCHI V.M., FANNI D., GEROSA C., NEMOLATO S., FAA G. Copper-related diseases: from chemistry to molecular pathology. Coord. Chem. Rev. 254 (7-8), 876, 2010.
  • 7. TIWARI O.N., PRADHAN M., NANDY T. Treatment of mining-influenced water at Malanjkhand copper mine, Desal. Wat. Treat. 57 (52), 24755, 2016.
  • 8. DJOUDI W., AISSANI-BENISSAD F., BOUROUINA-BACHA S. Optimization of copper cementation by iron using central composite design experiments. Chem. Eng. J. 133, 1, 2007.
  • 9. WEN Y., MA J., CHEN J., SHEN C., LI H., LIU W. Carbonaceous sulfur-containing chitosan – Fe(III): A novel adsorbent for efficient removal of copper (II) from water. Chem. Eng. J. 259, 372, 2015.
  • 10. BEN-ALI S. JAOUALI I., SOUISSI-NAJAR S., OUEDERNI A. Characterization and adsorption capacity of raw pomegranate peel biosorbent form copper removal. J. Clean. Product. 142 (4), 3809, 2017.
  • 11. NTIMBANI R.N., SIMATE G.S., NDLOVU S. Removal of copper ions from dilute synthetic solution using staple ion exchange fibres: Equilibrium and kinetic studies. J. Environ. Chem. Eng. 3 (2), 1258, 2015.
  • 12. WAN, F.H., JI Y.X., WANG J.J. Synthesis of heavy metal chelating agent with four chelating groups of N1,N2, N4,N5-tetrakis(2-mercaptoethyl)benzene-1,2,4,5-tetracarboxamide (TMBTCA) and its application for Cu-containing wastewater. J. Hazard. Mater. 241-242, 427, 2012.
  • 13. AKBAL F., CAMC S. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 269 (1-3), 214, 2011.
  • 14. MOHAMMADI T., MOHEB A., SADRZADEH M., RAZMI A. Separation of copper ions by electrodialysis using Taguchi experimental design. Desalination 169 (1), 21, 2004.
  • 15. AHMAD A.L., OOI B.S. A study on acid reclamation and copper recovery using low pressure nanofiltration membrane. Chem. Eng. J. 156 (2), 257, 2010.
  • 16. MA H., KÖKKILIC O., WATERS K.E. The use of the emulsion liquid membrane technique to remove copper ions from aqueous systems using statistical experimental design. Miner. Eng. 107, 88, 2017.
  • 17. DUAN H., WANG S., YANG X., YUAN X., ZHANG Q., HUANG Z., GUO H. Simultaneous separation of copper from nickel in ammoniacal solutions using supported liquid membrane containing synergistic mixture of M5640 and TRPO. Chem. Eng. Res. Des. 117, 460, 2017.
  • 18. HUANG Y., WU D., WANG X., HUANG W., LAWLESS D., FENG X. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep. Purif. Technol. 158, 124, 2016.
  • 19. SASTRE A.M., KUMAR A., SHUKLA J.P., SINGH R.K. Improved techniques in liquid membrane separations: an overview. Sep. Purif. Meth. 27 (2), 213, 1998.
  • 20. LEÓN G. Facilitated transport. Encyclopedia of Membranes. Springer; 763, Germany, 2016.
  • 21. GYVES J., RODRÍGUEZ E. Metal ion separations by supported liquid membranes. Ind. Eng. Chem. Res. 38 (6), 2182, 1999.
  • 22. NG Y.S. JAYAKUMAR N.S. HASHIM M.A. Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization. Dealination 278 (1-3), 250, 2011.
  • 23. SZPAKOWSKA M. Kinetics of coupled transport of Cu(II) ions through liquid membranes composed of technical solvents and paraffin mixtures, J. Membr. Sci. 92 (3), 267, 1994.
  • 24. HE D., MA M., ZHAO Z. Transport of cadmium ions through a liquid membrane containing amine extractants as carriers, J. Membr. Sci. 169 (1), 53, 2000.
  • 25. LEÓN G., GUZMÁN M.A. Facilitated transport of cobalt through bulk liquid membranes containing D2EHPA as carrier. Kinetic study of the influence of some operational variables. Desal. Wat. Treat. 13 (1-3), 267, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ba551bdc-fe9a-4836-b009-1ce110c84e6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.