PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 68 | 03 |

Tytuł artykułu

Obecność haplotypów mtDNA związanych z "klątwą matki" jako jedna z możliwych przyczyn obniżonego potencjału reprodukcyjnego zająca szaraka w Polsce

Warianty tytułu

EN
Presence of mtDNA haplotypes related to the "mother's curse" among Polish brown hares as a possible cause of their reduced reproductive success

Języki publikacji

PL

Abstrakty

EN
The aim of the study was to identify carriers of the mtDNA sequence related to the “mother’s curse” in the Polish population of the brown hare. Even slight mtDNA mutations inherited from mothers by their sons may diminish sperm cell motility by decreasing the synthesis of ATP and thus reduce the reproductive success of the species. In the literature this phenomenon is referred to as the “mother’s curse” effect. Muscle samples from 103 hares were collected from hunters in central, southern and eastern Poland. In order to identify hares with the “mother’s curse”, an mtDNA control region (CR) was selected, amplified according to (26), sequenced and analyzed phylogenetically along with sequences from the Genbank, using the PhyML program (9). Four animals were eliminated from mtDNA studies because of heteroplasmy. A tree consisting of 4 clades was generated. For the purpose of this study, the most important of them was the PW clade, which included 5 Polish hares (females) with sequences characteristic of the “mother’s curse”. This constitutes 5.05% of the population studied. The geographical origins of the hares with the “mother’s curse” were dispersed over almost the entire area under investigation. Two hares came from the Płock region, and the others from the Konin, Zamość and Nowy Sącz regions. A small fragment of the mtDNA sequence proved sufficient for the identification of an important functional effect of mutation in the mtDNA on the condition of an individual and the whole population. For the first time a screening method proved effective in the identification of hares with “mother’s curse” mtDNA mutations in a population of animals living in the wild. By then this had only been achieved in captive colonies. The identified group of female carriers, constituting 5.05% of the investigated sample, which persists in the population regardless of selection, may through their sons further compromise the effective size of a constantly decreasing and endangered population of the brown hare in Poland.

Wydawca

-

Rocznik

Tom

68

Numer

03

Opis fizyczny

s.179-183,rys.,bibliogr.

Twórcy

autor
  • Pracownia Biologii Molekularnej i Cytogenetyki, Katedra Genetyki i Ogólnej Hodowli Zwierząt, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy we Wrocławiu, ul.Kożuchowska 7, 51-631 Wrocław
autor
autor
autor

Bibliografia

  • 1.Amaral A., Ramalho-Santos J., St John J.: The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum. Reprod. 2007, 22, 1585-1596.
  • 2.Arnqvist G., Dowling D., Eady P., Gay L.: Genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution, 2010, 64, 3354-3363.
  • 3.Chan C., Liu V., Lau L., Yeung W., Ng E., Ho P.: Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. Mol. Hum. Reprod. 2005, 11, 843-846.
  • 4.Chinnery P., Thorburn D., David C., Samuels D., Sarah L., White S., Dahl H., Doug M., Turnbull D., Lightowlers R., Howell N.: The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet. 2000, 16, 500-505.
  • 5.Dowling D., Friberg U., Lindell J.: Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol. Evol. 2008, 23, 546-550.
  • 6. Dziedzic R., Kamieniarz R., Dziedzic B., Wójcik M., Beeger S., Flis M.: Przyczyny spadku populacji zająca szaraka w Polsce. Monografia. Wyd. Ministerstwo Środowiska. Warszawa 2000, 12-29.
  • 7.Edwards J., Fletcher M., Berny P.: Review of the factors affecting the decline of the European brown hare, Lepus europaeus (Pallas, 1778) and the use of wildlife incident data to evaluate the significance of paraguat. Agricult. Ecosys. Environ. 2000, 79, 95-103.
  • 8.Gemmell N., Victoria J., Metcalf V., Allendorf F.: Mother’s curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol. Evol. 2004, 19, 238-244.
  • 9.Guindon S., Gascuel O.: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. System. Biol. 2003, 52, 696-704.
  • 10.Hagelberg E., Goldman N., Lió P., Whelan S., Schiefenhöel D.: Evidence for mitochondrial DNA recombination in a human population of island Melanesia. Proc. Royal Soc. 1999, 266, 485-492.
  • 11.Horn S., Durka W., Wolf R., Ermala A., Stubbe A., Stubbe M.: Mitochondrial Genomes Reveal Slow Rates of Molecular Evolution and the Timing of Speciation in Beavers (Castor), One of the Largest Rodent Species. Public Library of Science ONE 2011, 6, 14622-14631.
  • 12.Kasapidis P., Suchentrunk F., Magoulas A., Kotoulas G.: The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuactions and anthropogenic translocations. Mol. Phylogen. Evol. 2005, 34, 55-66.
  • 13.Korpelainen H.: Genetic Maternal Effects on Human Life Span through the Inheritance of Mitochondrial DNA. Hum. Hered. 1999, 49, 183-185.
  • 14.Ladoukakis E., Theologidis I., Rodakis G., Zouros E.: Homologous Recombination between Highly Diverged Mitochondrial Sequences: Examples from Maternally and Paternally Transmitted Genomes. Mol. Biol. Evol. 2011, 28, 1847-1859.
  • 15.Ladoukakis E., Zouros E.: Direct Evidence for Homologous Recombination in Mussel (Mytilus galloprovincialis) Mitochondrial DNA. Mol. Biol. Evol. 2001, 18, 1168-1175.
  • 16.Nakada K., Sato A., Kayo K., MoritaT., Tanaka H., Inoue S., Yonekawa H., Hayashi J.: Mitochondria-related male infertility. PNAS. 2006, 103, 15148-15153.
  • 17.Nylander J.: MrModeltest v2.2. Program distributed by the author. Evol. Biol. C., Uppsala University 2004.
  • 18.Parsch J.: Evolution. The cost of being male. Science 2011, 332, 798-799.
  • 19.Pierpaoli M., Riga F., Trocchi V., Randi E.: Hare populations in Europe: intra and interspecific analysis of mtDNA variation. Biologie 2003, 326, 80-84.
  • 20.Pierpaoli M., Riga F., Trocchi V., Randi E.: Species distinction and evolutionary relationship of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol. Ecol. 1999, 8, 1805-1817.
  • 21.Pietrzak A.: Organizacja w Polsce ośrodków hodowli zajęcy typu otwartego. Praca magisterska. Wydział Biologii i Hodowli Zwierząt Uniwersytetu Przyrodniczego we Wrocławiu. Wrocław 2008.
  • 22.Ruiz-Pesini E., Lapeña A., Díez-Sánchez C., Pérez-Martos A., Montoya J., Alvarez E., Díaz M., Urriés A., Montoro L.: Human mtDNA Haplogroups Associated with High or Reduced Spermatozoa Motility. Am. J. Hum. Genet. 2000, 67, 682-696.
  • 23.Schmidt N., Asferg T., Forchhammer M.: Long-term patterns in European brown hare population dynamics in Denmark: effect of agriculture, predation and climate. BMC Ecology 2004, 4, 15-24.
  • 24.Smith R., Jennings N., Harris S.: A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mammal Rev. 2005, 35, 1-24.
  • 25.Smith S., Turbill C., Suchentrunk F.: Introducing mother's curse: low male fertility associated with an imported mtDNA haplotype in a captive colony of brown hares. Mol. Ecol. 2010, 19, 36-43.
  • 26.Stamatis C., Suchentrunk F., Moutou K. A., Giacometti M., Haerer G., Djan M., Vapa L., Vukovic M., Tvrtkoviæ N., Sert H., Alves P., Mamuris Z.: Phylogeography of the brown hare (Lepus europaeus) in Europe: a legacy of south-eastern Mediterranean refugia? J. Biogeography 2009, 36, 515-528.
  • 27.Strzała T., Kosowska B., Stamatis C., Moska M., Marszałek-Kruk B., Mamuris Z.: Genetic diversity of the Polish brown hare (Lepus europaeus) based on PCR-RFLP mtDNA analysis (preliminary results), EJPAU Med. Vet. 2008, 11, On line.
  • 28.Ujvari B., Dowton M., Madsen T.: Mitochondrial DNA recombination in a free-ranging Australian lizard. Biol. Let. 2008, 3, 189-192.
  • 29.Wade M., Brandvain Y.: Reversing mother's curse: selection on mitochondrial fitness effects. Evolution 2009, 63, 1084-1089.
  • 30.Wai T., Ao A., Zhang X., Cyr D., Dufort D., Shoubridge E.: The Role of Mitochondrial DNA Copy Number in Mammalian Fertility. Biol. Reprod. 2010, 83, 52-62.
  • 31.Wolff J., White D., Woodhams M., White H., Gemmell N.: The Strength and Timing of the Mitochondrial Bottleneck in Salmon Suggests a Conserved Mechanism in Vertebrates. Public Library of Science ONE 2011, 6, 20522-20526.
  • 32.Wójcicki P.: Charakterystyka ośrodków hodowli zajęcy typu budkowego. Wydz. Biologii i Hodowli Zwierząt Uniwersytetu Przyrodniczego we Wrocławiu. Wrocław 2008.
  • 33.Yu X., Huang Y.: Animal Mitochondrial DNA Recombination. Chin. J. Zoology 2008, 2, 31-35.
  • 34.Zeh J., Zeh D.: Maternal inheritance, sexual conflict and the maladapted male. Trends Genet. 2005, 21, 281-286.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ba489430-03dd-41e1-87e4-da0ca7208fa1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.