PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 1 |

Tytuł artykułu

Evaluation of the role of an antioxidant gene in NSC-34 motor neuron-like cells as a model of a motor neuron disease

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Spinal muscular atrophy is a rare genetic disease, which primarily affects motor neurons and predominantly occurs in children. To date, alternatives for the treatment of the disease have been controversial. Spinal muscular atrophy has a multi-factorial aetiology, with mitochondrial oxidative stress considered as the crucial pathogenic mechanism. To determine the mechanisms underlying the loss of motor neurons, NSC-34 motor neuron-like cells are often used as an in vitro model of spinal muscular atrophy. As plastin 3 (PLS3) has been demonstrated as a modifier of spinal muscular atrophy, the aim of the current study was to evaluate the neuroprotective effect of PLS3 in NSC-34 cells. Materials and methods: Plastin 3 was overexpressed in human embryonic kidney 293T cells and NSC-34 cells via lentiviral transduction. NSC-34 cells transduced with a lentiviral vector carrying the gene for LacZ β-galactosidase served as a control. Oxidative stress was then induced by depriving cells of serum, and the protective effect of PLS3 was assessed using a cellular reactive oxygen species detection assay. Results: While PLS3 was successfully overexpressed in human embryonic kidney 293T cells and NSC-34 cells, upregulation of this protein did not significantly decrease oxidative stress in serum-deprived NSC-34 cells relative to controls. Conclusions: Plastin 3 overexpression in NSC-34 cells did not elicit an antioxidative effect following serum deprivation. (Folia Morphol 2019; 78, 1: 1–9)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

1

Opis fizyczny

p.1-9,fig.,ref.

Twórcy

  • Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jeddah, Saudi Arabia
  • Neuroscience Research Unit, King Abdulaziz University, Faculty of Medicine, Branch of Sulaymaniyah, Jeddah, Saudi Arabia

Bibliografia

  • 1. Ackermann B, Kröber S, Torres-Benito L, et al. Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality. Hum Mol Genet. 2013; 22(7): 1328–1347, doi: 10.1093/hmg/dds540, indexed in Pubmed: 23263861.
  • 2. Acsadi G, Lee I, Li X, et al. Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy. J Neurosci Res. 2009; 87(12): 2748–2756, doi: 10.1002/jnr.22106, indexed in Pubmed: 19437551.
  • 3. Alías L, Bernal S, Fuentes-Prior P, et al. Mutation update of spinal muscular atrophy in Spain: molecular characterization of 745 unrelated patients and identification of four novel mutations in the SMN1 gene. Hum Genet. 2009; 125(1): 29–39, doi: 10.1007/s00439-008-0598-1, indexed in Pubmed: 19050931.
  • 4. Alrafiah A, Karyka E, Coldicott I, et al. Plastin 3 promotes motor neuron axonal growth and extends survival in a mouse model of spinal muscular atrophy. Mol Ther Methods Clin Dev. 2018; 9: 81–89, doi: 10.1016/j.omtm.2018.01.007, indexed in Pubmed: 29552580.
  • 5. Azzouz M, Le T, Ralph GS, et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest. 2004; 114(12): 1726–1731, doi: 10.1172/JCI22922, indexed in Pubmed: 15599397.
  • 6. Azzouz M, Martin-Rendon E, Barber RD, et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci. 2002; 22(23): 10302–10312, indexed in Pubmed: 12451130.
  • 7. Bernal S, Also-Rallo E, Martínez-Hernández R, et al. Plastin 3 expression in discordant spinal muscular atrophy (SMA) siblings. Neuromuscul Disord. 2011; 21(6): 413–419, doi: 10.1016/j.nmd.2011.03.009, indexed in Pubmed: 21546251.
  • 8. Bienemann AS, Martin-Rendon E, Cosgrave AS, et al. Long-term replacement of a mutated nonfunctional CNS gene: reversal of hypothalamic diabetes insipidus using an EIAV-based lentiviral vector expressing arginine vasopressin. Mol Ther. 2003; 7(5 Pt 1): 588–596, indexed in Pubmed: 12718901.
  • 9. Burghes AHM, Beattie CE. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci. 2009; 10(8): 597–609, doi: 10.1038/nrn2670, indexed in Pubmed: 19584893.
  • 10. Cashman NR, Durham HD, Blusztajn JK, et al. Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn. 1992; 194(3): 209–221, doi: 10.1002/aja.1001940306, indexed in Pubmed: 1467557.
  • 11. Choi-Lundberg DL, Lin Q, Chang YN, et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science. 1997; 275(5301): 838–841, indexed in Pubmed: 9012352.
  • 12. Déglon N, Tseng JL, Bensadoun JC, et al. Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther. 2000; 11(1): 179–190, doi: 10.1089/10430340050016256, indexed in Pubmed: 10646649.
  • 13. Eaton SL, Roche SL, Llavero Hurtado M, et al. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS One. 2013; 8(8): e72457, doi: 10.1371/journal.pone.0072457, indexed in Pubmed: 24023619.
  • 14. Federico A, Cardaioli E, Da Pozzo P, et al. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012; 322(1-2): 254–262, doi: 10.1016/j.jns.2012.05.030, indexed in Pubmed: 22669122.
  • 15. Hall CE, Yao Z, Choi M, et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell Rep. 2017; 19(9): 1739–1749, doi: 10.1016/j.celrep.2017.05.024, indexed in Pubmed: 28564594.
  • 16. Hamilton G, Gillingwater TH. Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med. 2013; 19(1): 40–50, doi: 10.1016/j.molmed.2012.11.002, indexed in Pubmed: 23228902.
  • 17. Hosseinibarkooie S, Peters M, Torres-Benito L, et al. The power of human protective modifiers: PLS3 and CORO1C unravel impaired endocytosis in spinal muscular atrophy and rescue SMA phenotype. Am J Hum Genet. 2016; 99(3): 647–665, doi: 10.1016/j.ajhg.2016.07.014, indexed in Pubmed: 27499521.
  • 18. Kanjilal B, Keyser BM, Andres DK, et al. Differentiated NSC-34 cells as an in vitro cell model for VX. Toxicol Mech Methods. 2014; 24(7): 488–494, doi: 10.3109/15376516.2014.943442, indexed in Pubmed: 25045830.
  • 19. Madji Hounoum B, Blasco H, Nadal-Desbarats L, et al. Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS. Anal Bioanal Chem. 2015; 407(29): 8861–8872, doi: 10.1007/s00216-015-9047-x, indexed in Pubmed: 26446897.
  • 20. Madji Hounoum B, Vourc’h P, Felix R, et al. NSC-34 motor neuron-like cells are unsuitable as experimental model for glutamate-mediated excitotoxicity. Front Cell Neurosci. 2016; 10: 118, doi: 10.3389/fncel.2016.00118, indexed in Pubmed: 27242431.
  • 21. Maier O, Böhm J, Dahm M, et al. Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration. Neurochem Int. 2013; 62(8): 1029–1038, doi: 10.1016/j.neuint.2013.03.008, indexed in Pubmed: 23562846.
  • 22. Nanou A. Gene therapy approaches to evaluate neuroprotection from oxidation stress in experimental models of amyotrophic lateral sclerosis. University of Sheffield. 2012.
  • 23. Oprea GE, Kröber S, McWhorter ML, et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science. 2008; 320(5875): 524–527, doi: 10.1126/science.1155085, indexed in Pubmed: 18440926.
  • 24. Park GH, Maeno-Hikichi Y, Awano T, et al. Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J Neurosci. 2010; 30(36): 12005–12019, doi: 10.1523/JNEUROSCI.2208-10.2010, indexed in Pubmed: 20826664.
  • 25. Patitucci TN, Ebert AD. SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons. Hum Mol Genet. 2016; 25(3): 514–523, doi: 10.1093/hmg/ddv489, indexed in Pubmed: 26643950.
  • 26. Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol. 2005; 288(6): F1144–F1152, doi: 10.1152/ajprenal.00221.2004, indexed in Pubmed: 15687247.
  • 27. Shababi M, Habibi J, Ma L, et al. Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy. J Mol Cell Cardiol. 2012; 52(5): 1074–1082, doi: 10.1016/j.yjmcc.2012.01.005, indexed in Pubmed: 22285962.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b99d7639-3269-4e91-b117-91909cfdb4e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.