PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 57 | 3 |

Tytuł artykułu

Connecting Hunter-Schreger Band microstructure to enamel microwear features: New insights from durophagous carnivores

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Several recent studies have clarified the link between microwear features and diet among living carnivorans, but it is still unclear whether previously interpreted evolutionary trends for dietary specialization, based on examination of enamel microstructure, are consistent with such insights from microwear analysis. This study examined the relationship between microwear and microstructure features using a sample of fossil hyaenids and canids. Hunter−Schreger Bands (HSB) and microwear features were examined at the same magnification level using optical stereomicroscopy. Multiple trials conducted on each specimen showed higher variance of smaller (<0.03 mm) microwear features compared to large (>0.03 mm) features. The number of pits was positively correlated with more derived HSB in both p4 and m1; fossil teeth with derived HSB possessed microwear features similar to patterns found in modern spotted hyenas. Microscopic scratches were not as closely associated with HSB patterns, but large scratches were more tightly linked to HSB than smaller ones on p4. An examination of evolutionary trends in HSB specialization in the two carnivoran lineages showed that derived HSB patterns evolved prior to the highly robust craniodental characteristics typical of later bone−cracking ecomorphologies. Therefore, the increase of hard food in the diet of less specialized hyaenids and canids was accompanied by a mosaic mode of evolution, with microstructural changes preceding key macrostructural morphological adaptations.

Wydawca

-

Rocznik

Tom

57

Numer

3

Opis fizyczny

p.473-484,fig.,ref.

Twórcy

autor
  • Integrative and Evolutionary Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA

Bibliografia

  • Anyonge, W. 1996. Microwear on canines and killing behavior in large carnivores: saber function in Smilodon fatalis. Journal of Mammalogy 77: 1059–1067.
  • Chai, H., Lee, J.J.−W., Constantino, P., Lucas, P.W., and Lawn, B. 2009. Remarkable resilience of teeth. Proceedings of the National Academy of Sciences 106: 7289–7293.
  • Daegling, D.J. and Grine, F.E. 1994. Bamboo feeding, dental microwear, and diet of the Pleistocene ape Gigantopithecus blacki. South African Journal of Science 90: 527–532.
  • Domning, D.P. and Beatty, B.L. 2007. Use of tusks in feeding by dugongid sirenians: Observations and tests of hypotheses. Anatomical Record 290: 523–538.
  • Ferretti, M.P. 1999. Tooth enamel structure in the hyaenid Chasmaporthetes lunensis lunensis from the late Pliocene of Italy, with implications for feeding behavior. Journal of Vertebrate Paleontology 19: 767–770.
  • Ferretti, M.P. 2007. Evolution of bone−cracking adaptations in hyaenids (Mammalia, Carnivora). Swiss Journal of Geoscience 100: 41–52.
  • Goillot, C., Blondel, C., and Peigne, S. 2009. Relationships between dental microwear and diet in Carnivora (Mammalia)—Implications for the reconstruction of the diet of extinct taxa. Palaeogeography, Palaeoclimatology, Palaeoecology 271: 13–23.
  • Green, J.L. 2009. Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study of Nothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zoological Journal of Linnean Society 156: 201–222.
  • Hagura, N. and Onodera, S. 1987. A secular and experimental study of the microwear of the carnassial teeth in dogs (Canis familiaris). Journal of the Mammal Society of Japan 12: 41–55.
  • Joomun, S.C., Hooker, J.J., and Collinson, M.E. 2008. Dental wear variation and implications for diet: An example from Eocene perissodactyls (Mammalia). Palaeogeography, Palaeoclimatology, Palaeoecology 263: 92–106.
  • Kaiser, T.M. and Brinkmann, G. 2006. Measuring dental wear equilibriums—the use of industrial surface texture parameters to infer the diets of fossil mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 239: 221–240.
  • Koenigswald, W. v. 1980. Schmelzmuster und Morphologie in den Molaren der Arvicolidae (Rodentia). Adhandlungen der Senckenbergischen naturforschenden Gesellschaft 539: 1–129.
  • Kruuk, H. 1972. The Spotted Hyena: a Study of Predation and Social Behavior. 335 pp. The University of Chicago Press, Chicago.
  • Maas, M.C. 1991. Enamel structure and microwear an experimental study of the response of enamel to shearing force. American Journal of Physical Anthropology 85: 31–50.
  • Merceron, G., Blondel, C., Brunet, M., Sen, S., Solounias, N., Viriot, L., and Heintz, E. 2004. The Late Miocene paleoenvironment of Afghanistan as inferred from dental microwear in artiodactyls. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 143–163.
  • Merceron, G., Escarguel, G., Angibault, J.−M., and Verheyden−Tixier, H. 2010. Can dental microwear textures record inter−individual dietary variations? PLoS ONE 5 (3): e9542.
  • Osi, A. and Weishampel, D.B. 2009. Jaw mechanism and dental function in the late Cretaceous basal eusuchian Iharkutosuchus. Journal of Morphology 270: 903–920.
  • Palmeirim, J.M. 1998. Analysis of skull measurements and measurers: can we use data obtained by various observers? Journal of Mammalogy 79: 1021–1028.
  • Peigne, S., Goillot, C., Germonpre, M., Blondel, C., Bignon, O., and Merceron, G. 2009. Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proceedings of the National Academy of Sciences 106: 15390–15393.
  • Peters, C.R. 1982. Electron−optical microscopic study of incipient dental microdamage from experimental seed and bone crushing. American Journal of Physical Anthropology 57: 283–301.
  • Purnell, M.A., Hart, P.J.B., Baines, D.C., and Bell, M.A. 2006. Quantitative analysis of dental microwear in threespine stickleback: a new approach to the analysis of trophic ecology in aquatic vertebrates. Journal of Animal Ecology 75: 967–977.
  • Rensberger, J.M. and Stefen, C. 2006. Functional differentiations of the microstructure in the upper carnassial enamel of the spotted hyena. Palaeontographica Abt. A 278: 149–162.
  • Rensberger, J.M. and Wang, X. 2005. Microstructural reinforcement in the canine enamel of the hyaenid Crocuta crocuta, the felid Puma concolor, and the late Miocene canid Borophagus secundus. Journal of Mammalian Evolution 12: 379–403.
  • Robson, S.K. and Young, W.G. 1990. A comparison of tooth microwear between an extinct marsupial predator, the Tasmanian tiger Thylacinus cynocephalus (Thylacinidae) and an extant scavenger, the Tasmanian devil Sacrophilus harrisii (Dasyuridae: Marsupialia). Australian Journal of Zoology 37: 575–589.
  • Rodrigues, H.G., Merceron, G., and Viriot, L. 2009. Dental microwear patterns of extant and extinct Muridae (Rodentia, Mammalia): ecological implications. Naturwissenschaften 96: 537–542.
  • Sanson, G.D., Kerr, S.A., and Gross, K.A. 2007. Do silica phytoliths really wear mammalian teeth? Journal of Archaeological Science 34: 526–531.
  • Schubert, B.W., Ungar, P.S., and DeSantis, L.R.G. 2010. Carnassial microwear and dietary behaviour in large carnivorans. Journal of Zoology 280: 257–263.
  • Scott, R.S., Ungar, P.S., Bergstrom, T.S., Brown, C.S., Grine, F.E., Teaford, M.F., and Walker, A. 2005. Dental microwear texture analysis shows within−species diet variability in fossil hominins. Nature 436: 693–695.
  • Semprebon, G. and Rivals, F. 2007. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to Recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 253: 332–347.
  • Solounias, N. and Semprebon, G. 2002. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. American Museum Novitates 3366: 1–49.
  • Stefen, C. 1997. Chapter 7. Differentiations in Hunter−Schreger bands of carnivores. In: W.v. Koenigswald and P.M. Sander (eds.), Tooth Enamel Microstructure, 123–136. A.A. Balkema, Rotterdam.
  • Stefen, C. 1999. Enamel microstructure of recent and fossil Canidae (Carnivora: Mammalia). Journal of Vertebrate Paleontology 19: 576–587.
  • Stefen, C. 2001. Enamel structure of arctoid Carnivora: Amphicyonidae, Ursidae, Procyonidae, and Mustelidae. Journal of Mammalogy 82: 450–462.
  • Stefen, C. and Rensberger, J.M. 1999. The specialized structure of hyaenid enamel: description and development within the lineage—including percrocutids. Scanning Microscopy 13: 363–380.
  • Teaford, M.F., Mass, M.C., and Simons, E.L. 1996. Dental microwear and microstructure in early Oligocene primates from the Fayum, Egypt: Implications for diet. American Journal of Physical Anthropology 101: 527–543.
  • Tseng, Z.J. 2011. Variation and implications of intra−dentition Hunter-Schreger band pattern in fossil hyaenids and canids (Carnivora, Mammalia). Journal of Vertebrate Paleontology 31: 1163–1167.
  • Tseng, Z.J. and Stynder, D. 2011. Mosaic functionality in a transitional ecomorphology: skull biomechanics in stem Hyaeninae compared to modern South African carnivorans. Biological Journal of the Linnean Society 102: 540–559.
  • Tseng, Z.J. and Wang, X. 2011. Do convergent ecomorphs evolve through convergent morphological pathways? Cranial shape evolution in fossil hyaenids and borophagine canids (Carnivora, Mammalia). Paleobiology 37: 470–489.
  • Ungar, P.S. 1995. A semiautomated image analysis procedure for the quantification of dental microwear II. Scanning 17: 57–59.
  • Van Valkenburgh, B. 1996. Feeding behavior in free−ranging, large African carnivores. Journal of Mammalogy 77: 240–254.
  • Van Valkenburgh, B. 2007. Déjà vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology 47: 147–163.
  • Van Valkenburgh, B. and Koepfli, K.−P. 1993. Cranial and dental adaptations to predation in canids. Symposium of the Zoological Society of London 65: 15–37.
  • Van Valkenburgh, B., Teaford, M.F., and Walker, A. 1990. Molar microwear and diet in large carnivores: inferences concerning diet in the sabretooth cat, Smilodon fatalis. Journal of Zoology 222: 319–340.
  • Walker, A., Hoeck, H.N., and Perez, L. 1978. Microwear of mammalian teeth as indicator of diet. Science 201: 908–910.
  • Wang, X., Tedford, R.H., and Taylor, B.E. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 243: 1–391.
  • Werdelin, L. 1989. Constraint and adaptation in the bone−cracking canid Osteoborus (Mammalia: Canidae). Paleobiology 15: 387–401.
  • Werdelin, L. 1996. Carnivoran ecomorphology: a phylogenetic perspective. In: J.L. Gittleman (ed.), Carnivore Behavior, Ecology, and Evolution, 582–624. Cornell University Press, New York.
  • Williams, V.S., Barrett, P.M., and Purnell, M.A. 2009. Quantitative analysis of dental microwear in hadrosaurid dinosaurs, and the implications for hypotheses of jaw mechanics and feedings. Proceedings of the National Academy of Sciences 106: 11194–11199.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b98bd2a0-2f83-443d-9c50-15a5d6338691
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.