PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 65 | 1 |

Tytuł artykułu

Genetic variation of Aconitum sect. Aconitum (Ranunculaceae) at a macrogeographical scale in the Carpathians

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The tetraploid (2n = 32) Aconitum sect. Aconitum in the Eastern Carpathians, Southern Carpathians and Apušeni Mts. is represented by high-mountain A. bucovinese, A. firmum subsp. fissurae and their putative taxonomic hybrid A. ×nanum. The aim of the paper was to reveal which delimiting system: taxonomic vs.geographic-population better explains genetic variability (ISSR — Inter Simple Sequence Repeats) of the Aconitum individuals in the Eastern/Southern Carpathians. Twenty nine plants sampled in five populations within entire range of taxa distribution were assigned to genetic groups according to a Bayesian STRUCTURE analysis, neighbour-net classification (NN), and nonmetric multidimensional scaling ordination (NMDS). Three taxa were distributed in four (NN, NMDS) or two (STRUCTURE) genetic groups, and the partitioning of genetic variation with analysis of molecular variance (AMOVA) revealed the highest percentage of variation attributed to the four ISSR genetic groups (22.6%), then to the two STRUCTURE groups (18.9%) and three taxa (15.6%, all P < 0.001), and finally to the three geographic regions (6.5%, P = 0.013). Genetic groups harbored specimens from distant regions: A. f. subsp. fissurae had similar genetic profiles in the Southern Carpathians and Apušeni Mts. (100% support), and some specimens of A. bucovinense had genetic links with A. f. subsp. fissurae. The hybrid species A. ×nanum was genetically specific. We concluded that (i) genetic links between nowadays distantly located populations could have originated in the effect of ancient contacts and hybridization, (ii) probably in the Carpathians two ancient genetic centers of the A. sect. Aconitum existed and (iii) high genetic specificity of the hybrid species A. ×nanum deserves further studies.

Wydawca

-

Rocznik

Tom

65

Numer

1

Opis fizyczny

p.57-68,fig.,ref.

Twórcy

autor
  • Department of Plant Breeding and Seed Science, University of Agriculture in Krakow, Lobzowska 24, 31-140 Krakow, Poland
autor
  • Department of Plant Breeding and Seed Science, University of Agriculture in Krakow, Lobzowska 24, 31-140 Krakow, Poland
autor
  • Botanical Garden, Jagiellonian University in Krakow, Kopernika 27, 31-501 Krakow, Poland

Bibliografia

  • Bell G.D.M, Kane N.C., Rieseberg L.H., Adams K.L. 2013 — RNA-Seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations — Genome Biol. Evol. 5: 1309–1323.
  • Boroń P., Zalewska-Gałosz J., Nowak A., Sutkowska A., Zemanek B., Mitka J. 2011 — Aconitum bucovinenseZapał. (Ranunculaceae) at the range margin: spatial population-genetic structure of the Carpathian endemic and its conservation — Acta. Soc. Bot. Pol. 80: 315–326.
  • Brennan A.C., Barker D., Hiscock S.J., Abbott R.J. 2012 — Molecular genetic and quantitative trait divergence associated with recent homoploid hybrid speciation: a study of Senecio squalidus (Asteraceae) — Heredity, 108: 87–95.
  • Dangi R.S., Lagu M.D., Choudhary L.B., Ranjekar P.K., Gupta V.S. 2004 — Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers — BMC Plant Biol. 4: 4–13.
  • Dhar U., Samant S. 1993 — Endemic plant diversity in the Indian Himalaya. I. Ranunculaceae to Paeoniaceae — J. Biogeogr. 20: 659–668.
  • Earl D.A., vonHoldt B.M. 2012 — STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method — Conserv. Gen. Res. 4: 359–361, https://doi.org/10.1007/s12686-011-9548-7.
  • Excoffier L., Laval G., Schneider S. 2005 — Arlequin (version 3.0): An integrated software package for population genetics data analysis — Evol. Biol. 1: 47–50.
  • Excoffier L., Smouse P.E., Quattro J.M. 1992 — Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data — Genetics, 131: 479–491.
  • Feldman M., Liu B., Segal G., Abbo S., Levy A.A., Vega J.M. 1997 — Rapid elimination of low-copy DNA sequences in polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes — Genetics, 147: 1381–1387.
  • Hansen K.T., Elven R., Brochmann C. 2000 — Molecules and morphology in concert: tests of some hypotheses in arctic Potentilla (Rosaceae) — Am. J. Bot. 87: 1466–1479.
  • Huson D.H., Bryant D. 2006 — Application of phylogenetic networks in evolutionary studies — Mol. Biol. Evol. 23: 254–267.
  • Ilnicki T., Joachimiak A., Sutkowska A., Mitka J. 2011 — Cytotypes distribution of Aconitum variegatum L. in Central Europe (In: Geobotanist and Taxonomist. A volume dedicated to Professor A. Zając on the 70th anniversary of his birth, Ed: B. Zemanek) — Institute of Botany, Jagiellonian University, Cracow, pp. 169–192.
  • Ilnicki T., Mitka J. 2009 — Chromosome numbers in Aconitum sect. Aconitum (Ranunculaceae) from the Carpathians — Caryologia, 62: 198–203.
  • Kadota Y. 1987 — A revision of Aconitum subgenus Aconitum (Ranunculaceae) of East Asia — Sanwa Shoyaku Comp., Ltd., Utsunomiya.
  • Kruskal J.B. 1964 — Nonmetric multidimensional scaling: a new numerical method — Psychometrika, 29: 115–129.
  • Li A., Ge S. 2001 — Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers — Ann. Bot. 87: 585–590.
  • Luo Y., Zhang F., Yang Q-E. 2005 — Phylogeny of Aconitum subgenus Aconitum (Ranunculaceae) inferred from ITS sequences — Plant Syst. Evol. 252: 11–25.
  • Mas de Xaxars G., García-Fernández A., Barnola P., Martín J., Arnau Mercadé A., Vallès J., Vargas P., Vigo J., Garnatje T. 2015 — Phylogenetic and cytogenetic studies reveal hybrid speciation in Saxifraga subsect. Triplinervium (Saxifragaceae) — J. Syst. Evol. 53: 53–62.
  • Mitka J. 2002 — Phenetic and geographic pattern of Aconitum sect. Napellus (Ranunculaceae) in the Eastern Carpathians — a numerical approach — Acta Soc. Bot. Pol. 71: 35–48.
  • Mitka J. 2003 — The genus Aconitum L. (Ranunculaceae) in Poland and adjacent countries — Institute of Botany, Jagiellonian University, Kraków.
  • Mitka J. 2005 — Historyczno-biogeograficzne uwarunkowania endemizmu rodzaju Aconitum(Ranunculaceae) w Europie Środkowej [Historical-geographical background of endemism of Aconitum(monkshood — Ranunculaceae) in Central Europe] — Roczn. Bieszczadzkie, 13: 41–65 (in Polish, English summary).
  • Mitka J. 2012 — Aconitum in Central Europe: from Linnaean taxonomy to molecular markers — Mod. Phytomorphol. 1: 7–9.
  • Mitka J., Boroń P., Novikoff A., Binkiewicz B. 2016 — Two major groups of chloroplast DNA haplotypes in diploid and tetraploid Aconitum subgen. Aconitum (Ranunculaceae) in the Carpathians — Mod. Phytomorphol. 9 (Suppl.): 5–15.
  • Mitka J., Boroń P., Wróblewska A., Bąba W. 2015 — AFLP analysis reveals infraspecific phylogenetic relationships and population genetic structure of two species of Aconitum in Central Europe — Acta Soc. Bot. Pol. 84: 267–276.
  • Mitka J., Starmühler W. 2000 — Phenetic variability of Aconitum lasiocarpum (Rchb.) Gáyer (Ranunculaceae): extension of taxonomic and geographic borders — Acta Soc. Bot. Pol. 69: 145–155.
  • Mitka J., Sutkowska A., Ilnicki T., Joachimiak A. 2007 — Reticulate evolution of high-alpine Aconitum(Ranunculaceae) in the Estern Sudetes and Western Carpathians (Central Europe) — Acta Biol. Cracov. Ser. Bot. 49: 15–26.
  • Nei M. 1973 — Analysis of gene diversity in subdivided populations — PNAS-USA 70: 3321-3323.
  • Nei M., Li W.H. 1979 — Mathematical model for studying genetic variation in terms of restriction endonucleases — PNAS-USA, 76: 5269–5273.
  • Novikoff A., Mitka J. 2011 — Taxonomy and ecology of the genus Aconitum L. in the Ukrainian Carpathians — Wulfenia, 18: 37–61.
  • Parker P.G., Snow A.A., Schug M.D., Booton G.C., Fuerst P.A. 1998 — What molecules can tell us about populations: choosing and using a molecular marker — Ecology, 79: 361–382.
  • Pickersgill B. 1993 — Interspecific hybridization by sexual means (In: Plant breeding. Principles and prospects, Eds: M.D. Hayward, N.O. Bosemark, T. Romagosa) — Springer, Netherlands, pp. 63–78.
  • Poehlman J.M., Sleper D.A. 1995 — Methods in Plant Breeding — Fourth Edition, Iowa State University Press, Ames.
  • Pritchard J.K., Stephens M., Donelly P. 2000 — Inference of population structure using multilocus genotype data — Genetics, 155: 945–959.
  • Rohlf F.J. 2002 — NTSYS-pc. Numerical taxonomy and multivariate analysis, version 2.1 — Exeter Software, Setauket, New York, USA.
  • Ronikier M. 2011 — Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective — Taxon, 60: 373–289.
  • Schönswetter P., Tribsch A. 2005 — Vicariance and dispersal in the Alpine perennial Bupleurum stellatum L. (Apiaceae) — Taxon, 54: 725. http://dx.doi.org/10.2307/25065429
  • Stepansky A., Kovalski I., Perl-Treves R. 1999 — Interspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation — Plant Syst. Evol. 271: 313–332.
  • Sutkowska A., Anamthawat-Jónsson K., Bąba W., Mitka J. 2015a — ISSR analysis of two founding plant species on the volcanic island Surtsey, Iceland: grass versus shrub — Surtsey Res. 13: 17–30.
  • Sutkowska A., Boroń P., Mitka J. 2013 — Natural hybrid zone of the Aconitum species in the Western Carpathians: Linnaean taxonomy and ISSR fingerprinting — Acta. Biol. Cracov. Ser. Bot. 55: 114–126.
  • Sutkowska A., Boroń P., Warzecha T., Dębowski J., Mitka J. 2017 — Hybridization and introgression among three Aconitum (Ranuculaceae) species of different ploidy levels in the Tatra Mountains (Western Carpathians) — Plant Spec. Biol. https://doi.org/10.1111/1442-1984.12162.
  • Sutkowska A., Mitka J., Glimos E., Warzecha T. 2007 — Phylogenetic relations among selected species of genus Bromus, subgenus Festucaria (Poaceae) (In: Biological issues in grasses, Ed: L. Frey) — W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp. 169–179.
  • Sutkowska A., Pasierbiński A., Bąba W., Warzecha T., Mitka J. 2015b — Additivity of ISSR markers in natural hybrids of related forest species Bromus benekenii and B. ramosus (Poaceae) — Acta Biol. Cracov. Ser. Bot. 57: 82–94.
  • Utelli A-B., Roy B.A. 2000 — Pollinator abundance and behavior on Aconitum lycoctonum (Ranunculaceae): An analysis of the quantity and quality components of pollination — Oikos, 89: 461–470.
  • Wacławska-Ćwiertnia K., Mitka J. 2016 — Typification of Zapałowicz's names in Aconitum section Aconitum— Phytokeys, 58: 119–126, https://doi.org/10.3897/phytokeys.58.7110.
  • Wieczorek A., Achrem M., Mitka J., Rogalski M., Werczyńska K. 2014 — Genetic variability of the populations Zwackhia viridis (Ach.) Poetsch & Schied (Lecanographaceae, lichenized Ascomycetes) in the Eastern Poland: geographic versus habitat distance — Pol. J. Ecol. 62: 253–261.
  • Zapałowicz H. 1908 — Conspectus florae Galiciae criticus 2 — Akademia Umiejętności, Kraków.
  • Zieliński R. 1982a — An electrophoretic and cytological study of hybridisation between Aconitum napellusssp. skerisoare (2n=32) and A. variegatum (2n=16). I. Electrophoretic evidence — Acta Soc. Bot. Pol. 51: 453–464.
  • Zieliński R. 1982b — An electrophoretic and cytological study of hybridisation between Aconitum napellusssp. skerisoare (2n=32 ) and A. variegatum (2n=16). II. Cytological evidence — Acta Soc. Bot. Pol. 51: 465–471.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-b97327b2-4286-4643-a0a8-bafd096e4f1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.