PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 58 | 1 |

Tytuł artykułu

Phylogenetic analysis and genetic structure of new isolates of Tomato mosaic virus in Iran

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present report describes the new occurrence of Tomato mosaic virus (ToMV) in cabbage, bean and Malva neglecta plants in Iran. In this study, sequence analyses of a partial RNA dependent RNA polymerases (RdRp) and complete movement protein (MP) and the coat protein (CP) nucleotide sequences of three new ToMV isolates collected from major crop fields in Iran revealed low genetic variation of RdRp gene compared to the CP and MP genes. The different topologies of the phylogenetic trees constructed, using available open reading frame (ORF1), ORF2 and ORF3 sequences from ToMV isolates, indicated different evolutionary constraints in these genomic regions. Statistical analysis also revealed that with the exception of CP other tested ToMV genes were under negative selection and the RdRp gene was under the strongest constraints. According to the phylogenetic tree it can be inferred from the nucleotide sequences of the complete CP and MP genes, that isolates from Iran and Egypt formed separate groups, irrespective of host origin. However, isolates clustered into groups with correlation to geographic origin but not the host. Analysis of the Ks*, Z* and Snn values also indicated genetic differentiation between ToMV populations. The Tajima’s D, Fu and Li’s statistical values were significantly negative for the RdRp gene of the Asian population which suggests the sudden expansion of ToMV in Asia. Taken together, the results indicate that negative selection and genetic drift were important evolutionary factors driving the genetic diversification of ToMV.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.25-35,fig.,ref.

Twórcy

  • Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Research Department of Plant Virology, Iranian Research Istitute of Plant Protection (IRIPP), Tehran, Iran

Bibliografia

  • Adams M.J., Antoniw J.F., Kreuze J. 2009. Virgaviridae: a new family of rod-shaped plant viruses. Archives of Virology 154 (12): 1967–1972. DOI: https://doi.org/10.1007/s00705-009-0506-6
  • Aghamohammadi V., Rakhshandehroo F., Shams-Bakhsh M., Palukaitis M. 2013. Distribution and genetic diversity of Tomato mosaic virus isolates in Iran. Journal of Plant Pathology 95 (2): 339–347. DOI: http://dx.doi.org/10.4454/JPP.V95I2.030
  • Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25 (17): 3389–3402. DOI: https://doi.org/10.1093/nar/25.17.3389
  • Booy G., Hendriks R.J.J., Smulders M.J.M., van Groenendael J.M., Vosman B. 2000. Genetic diversity and the survival of populations. Plant Biology 2: 379–395. DOI: 10.1055/s-2000-5958
  • Converse R.H., Martin R.R. 1999. ELISA methods for plant viruses. p. 179–196. In: “Serological Methods for Detection and Identification of Viral and Bacterial Plant Pathogens, A Laboratory Manual” (R. Hampton, E.M. Ball, S.H. De Boer, eds.). APS Press, St. Paul, MN, 389 pp.
  • Ding X.S., Liu J., Cheng N.H., Folimonov A., Hou Y.M., Bao Y., Katagi C., Carter S.A., Nelson R.S. 2004. The tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Molecular Plant- -Microbe Interactions 17 (6): 583–592. DOI: https://doi.org/10.1094/mpmi.2004.17.6.583
  • Fabre F., Montarry J., Coville J., Senoussi R., Simon V., Moury B. 2012. Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing. PLoS Pathogens 8 (4): e1002654. DOI: https://doi.org/10.1371/journal.ppat.1002654
  • Fraile A., Malpica J.M., Aranda M.A., Guez-Cerezo E.R., Garcia-Arenal F. 1996. Genetic diversity in Tobacco mild green mosaic tobamovirus infecting the wild plant Nicotiana glauca. Virology 223 (1): 148–155. DOI: https://doi.org/10.1006/viro.1996.0463
  • Fu Y.X., Li W.H. 1993. Statistical tests of neutrality of mutations. Genetics 133 (3): 693–709.
  • Garcia-Arenal F., Fraile A., Malpica J.M. 2001. Variability and genetic structure of plant virus populations. Annual Review of Phytopathology 39: 157–186. DOI: https://doi.org/10.1146/annurev.phyto.39.1.157
  • Gibbs A.J., Wood J., Garcia-Arenal F., Ohshima K., Armstrong J.S. 2015. Tobamoviruses have probably co-diverged with their eudicotyledonous hosts for at least 110 million years. Virus Evolution 1 (1): vev019. DOI: https://doi.org/10.1093/ve/vev019
  • Hall G. 2006. Selective constraint and genetic differentiation in geographically distant barley yellow dwarf virus populations. Journal of General Virology 87 (10): 3067–3075. DOI:https://doi.org/10.1099/vir.0.81834-0
  • Harrison B.D. 2002. Virus variation in relation to resistancebreaking in plants. Euphytica 124: 181–192.
  • Hashemi S.S., Rakhshandehroo F., Shahraeen N. 2014. First Report of Tomato mosaic virus on common sow thistle in Iran. Plant Disease 98 (8): 1164–1164. DOI: https://doi.org/10.1094/pdis-03-14-0220-pdn
  • Holling M., Huttinga H. 1995. Tomato mosaic virus. CMI⁄AAB Descriptions of Plant Viruses No 156. [Available on: http://www.dpvweb.net/dpv/showdpv.php?dpvno=156]
  • Hudson R.R. 2000. A new statistic for detecting genetic differentiation. Genetics 155 (4): 2011–2014.
  • Hu Q., Jiang T., Xue C., Zhou X. 2012. Characterization and complete nucleotide sequence of two isolates of Tomato mosaic virus. Journal of Phytopathology 160 (3): 115–119. DOI: https://doi.org/10.1111/j.1439-0434.2011.01866.x
  • Imran M., Khan M.A., Fiaz M., Azeem M., Mustafa M. 2013. Influence of environmental conditions on Tomato mosaic virus disease development under natural condition. Pakistan Journal of Phytopathology 25 (2): 117–122.
  • Ishikawa M., Meshi T., Motoyoshi T., Takamatsu N., Okada Y. 1986. In vitro mutagenesis of the putative replicase genes of Tobacco mosaic virus. Nucleic Acids Research 14 (21): 8291–8305. DOI: https://doi.org/10.1093/nar/14.21.8291
  • Kubota K., Tsuda S., Tamai A., Meshi T. 2003. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. Journal of Virology 77 (20): 11016–11026. DOI: https://doi.org/10.1128/jvi.77.20.11016-11026.2003
  • Letschert B., Adam G., Lesemann D.E., Willingmann P., Heinze P. 2002. Detection and differentiation of serologically crossreacting tobamoviruses of economical importance by RT-PCR and RT-PCR-RFLP. Journal of Virological Methods 106 (1): 1–10. DOI: https://doi.org/10.1016/s0166-0934(02)00135-0
  • Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25 (11): 1451–1452. DOI: https://doi.org/10.1093/bioinformatics/btp187
  • Moya A., Holmes E.C., Gonzalez-Candelas F. 2004. The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology 2 (4): 279–288. DOI:https://doi.org/10.1038/nrmicro863
  • Murray G.G.R., Kosakovsky Pond S.L., Obbard D.J. 2013 Suppressors of RNAi from plant viruses are subject to episodic positive selection. Proceedings of The Royal Society B: Biological Science 280 (1756): 20130965–20130965. DOI:https://doi.org/10.1098/rspb.2013.0965
  • Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York, NY, USA, 352 pp.
  • Pamilo P., Bianchi N.O. 1993. Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Molecular Biology and Evolution 10 (2): 271–281. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040003
  • Pearson W.R., Lipman D.J. 1988. Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences 85 (8): 2444–2448. DOI: https://doi.org/10.1073/pnas.85.8.2444
  • Rangel E.A., Alfaro-Fernández A., Font-San-Ambrosio M.I., Luis-Arteaga M., Rubio L. 2011. Genetic variability and evolutionary analyses of the coat protein gene of Tomato mosaic virus. Virus Genes 43 (3): 435-438. DOI: https://doi.org/10.1007/s11262-011-0651-3
  • Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 (4): 406–425. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Slatkin M. 1987. Gene flow and the geographic structure of natural populations. Science 236 (4803): 787–792. DOI:https://doi.org/10.1126/science.3576198
  • Sundaraj S., Srinivasan R., Culbreath A.K., Riley D.G., Pappu H.R. 2014. Host plant resistance against Tomato spotted wilt virus in peanut (Arachis hypogaea) and its impact on susceptibility to the virus, virus population genetics, and vector feeding behavior and survival. Phytopathology 104 (2): 202–210. DOI: https://doi.org/10.1094/phyto-04-13-0107-r
  • Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
  • Takamatsu N., Ohno T., Meshi T., Okada Y. 1983. Molecular cloning and nucleotide sequence of the 30K and the coat protein cistron of TMV (tomato strain) genome. Nucleic Acids Research. 11 (11): 3767–3778. DOI: https://doi.org/10.1093/nar/11.11.3767
  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28 (10): 2731–2739. DOI: https://doi.org/10.1093/molbev/msr121
  • Ullah Z., Chai B., Hammar S., Raccah B., Gal-On A., Grumet R. 2003. Effect of substitution of the amino termini of coat proteins of distinct potyvirus species on viral infectivity and host specificity. Physiological and Molecular Plant Pathology 63 (3): 129–139. DOI: https://doi.org/10.1016/j.pmpp.2003.11.001
  • Walia J. J., Willemsen A., Elci E., Caglayan K., Falk B. W., Rubio L. 2014. Genetic variation and possible mechanisms driving the evolution of worldwide Fig mosaic virus isolates. Phytopathology 104 (1): 108–114. DOI: https://doi.org/10.1094/phyto-05-13-0145-r
  • Wei T.Y., Yang J.G., Liao F.R., Gao F.L., Lu L.M., Zhang X.T., Li F., Wu Z.J., Lin Q.Y., Xie L.H., Lin H.X. 2009. Genetic diversity and population structure of rice stripe virus in China. Journal of General Virology 90 (6): 1025–1034. DOI https://doi.org/10.1099/vir.0.84058-0
  • Weir B.S., Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38 (6): 1358−1370. DOI: https://doi.org/10.2307/2408641
  • Woelk C.H., Holmes E.C. 2002. Reduced positive selection in vector-borne RNA viruses. Molecular Biology and Evolution 19 (12): 2333–2336. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a004059
  • Zhang C.L., Gaob R., Wanga J., Zhang G.M., Li X.D., Liuc H.T. 2011. Molecular variability of Tobacco vein banding mosaic virus populations. Virus Research 158 (1–2): 188–198. DOI:https://doi.org/10.1016/j.virusres.2011.03.031

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b9605087-997d-4618-84b7-e9fd133fd52b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.