Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |
Tytuł artykułu

Simulated ammonia nitrogen wastewater treated with spent mushroom compost in a laboratory bioreactor

Treść / Zawartość
Warianty tytułu
Języki publikacji
The simulated ammonia nitrogen wastewater was treated with spent mushroom compost (SMC) in a laboratory bioreactor (LBR), and shifts in microbial diversity in LBR were conducted by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE). We found that the removal efficiencies of NH4+-N and COD reached 73.4% and 61.7%, respectively, and that simultaneous nitrification and denitrification (SND) was observed during the process of NH4+-N removal. In addition, we observed that there were no obvious changes in microbial diversity shifts, and that the predominant four isolates were identified as Flavobacterium johnsoniae, Sphinbacterium multivorum, Comamonas sp., and Rhizobium sp., which functioned together and played a critical role in treating simulated ammonia nitrogen wastewater in LBR. Overall, SMC could provide both carbon sources and indigenous functional microorganisms for nitrogen removal, indicating that SMC has potential for wastewater treatment.
Słowa kluczowe
Opis fizyczny
  • College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
  • College of Real Estate, Beijing Normal University, Zhuhai 519087, PR China
  • College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
  • 1. LI Y. Present development situation and tendency of edible mushroom industry in China. in 18th Congress of the International Society for Mushroom Science, Beijing, China. 2012.
  • 2. LAU K., TSANG Y., CHIU S. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52 (9), 2003.
  • 3. CHEN G.-Q., ZENG G.-M., TU X., HUANG G.-H., CHEN Y.-N. A novel biosorbent: characterization of the spent mushroom compost and its application for removal of heavy metals. Journal of Environmental Sciences 17 (5), 2005.
  • 4. CHEONG Y.W., DAS B.K., ROY A., BHATTACHARYA J. Performance of a SAPS-based chemo-bioreactor treating acid mine drainage using low-DOC spent mushroom compost, and limestone as substrate. Mine Water Environ. 29 (3), 2010.
  • 5. CHIU S.-W., GAO T., CHAN C.S.-S., HO C.K.-M. Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius. Chemosphere 75 (6), 2009.
  • 6. EGGEN T.,SASEK V. Use of Edible and Medicinal Oyster Mushroom [Pleurotus ostreatus (Jacq.: Fr.) Kumm.] Spent Compost in Remediation of Chemically Polluted Soils. International Journal of Medicinal Mushrooms 4 (3), 2002.
  • 7. MATUTE R.G., FIGLAS D., MOCKEL G., CURVETTO N. Degradation of Metsulfuron Methyl by Agaricus blazei Murrill Spent Compost Enzymes. Bioremediation J. 16 (1), 2012.
  • 8. TREJO-HERNANDEZ M., LOPEZ-MUNGUIA A., QUINTERO RAMIREZ R. Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochem. 36 (7), 2001.
  • 9. BISARIA R., VASUDEVAN P., BISARIA V. Utilization of spent agro-residues from mushroom cultivation for biogas production. Appl. Microbiol. Biotechnol. 33 (5), 1990.
  • 10. KUMARAN S., SASTRY C., VIKINESWARY S. Laccase, cellulase and xylanase activities during growth ofPleurotus sajor-caju on sagohampas. World J. Microbiol. Biotechnol. 13 (1), 1997.
  • 11. YANG Y.L., HUANG C.M., HU K.H. Purification and further characterizations of the cellulase from the spent mushroom compost of Hypsizygus marmoreus. Research Journal of Biotechnology 10 (2), 2015.
  • 12. SOCHTIG H.,GRABBE K. The production and utilization of organic-mineral fertilizer from spent mushroom compost. Mushroom Sci 14, 1995
  • 13. WILLIAMS B., MCMULLAN J., MCCAHEY S. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour. Technol. 79 (3), 2001.
  • 14. SRINANDAN C.S., D’SOUZA G., SRIVASTAVA N., NAYAK B.B., NERURKAR A.S. Carbon sources influence the nitrate removal activity, community structure and biofilm architecture. Bioresour. Technol. 117, 292, 2012
  • 15. BORDEN A.K., BRUSSEAU M.L., CARROLL K.C., MCMILLAN A., AKYOL N.H., BERKOMPAS J., MIAO Z.H., JORDAN F., TICK G., WAUGH W.J., GLENN E.P. Ethanol Addition for Enhancing Denitrification at the Uranium Mill Tailing Site in Monument Valley, AZ. Water Air Soil Pollut. 223 (2), 2012.
  • 16. SHEN Z.,WANG J. Biological denitrification using crosslinked starch/PCL blends as solid carbon source and biofilm carrier. Bioresour. Technol. 102 (19), 2011.
  • 17. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed. 1998, Washington,DC: American Public Health Association.
  • 18. ZENG W., ZHANG Y., LI L., PENG Y.Z., WANG S.Y. Simultaneous nitritation and denitritation of domestic wastewater without addition of external carbon sources at limited aeration and normal temperatures. Desalination and Water Treatment 21 (1-3), 2010.
  • 19. YANG S.,YANG F.L. Nitrogen removal via shortcut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor. J. Hazard. Mater. 195, 2011.
  • 20. RAHIMI Y., TORABIAN A., MEHRDADI N., SHAHMORADI B. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). J. Hazard. Mater. 185 (2-3), 2011.
  • 21. YANG Y., HUANG S., ZHANG Y., XU F. Nitrogen Removal by Chelatococcus daeguensis TAD1 and Its Denitrification Gene Identification. Appl. Biochem. Biotechnol. 172 (2), 829, 2014.
  • 22. TAYLOR S., HE Y., ZHAO B., HUANG J. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL. Journal of Environmental Sciences 21 (10), 2009.
  • 23. WEI D., DU B., XUE X.D., DAI P., ZHANG J. Analysis of factors affecting the performance of partial nitrification in a sequencing batch reactor. Appl. Microbiol. Biotechnol. 98 (4), 2014.
  • 24. HE Q.M., PENG X.Y., LI Z.Y. The treatment of animal manure wastewater by coupled simultaneous methanogenesis and denitrification (SMD) and shortcut nitrification - denitrification (SND). J. Chem. Technol. Biotechnol. 89 (11), 2014.
  • 25. AKIN B.S.,UGURLU A. Monitoring and control of biological nutrient removal in a Sequencing Batch Reactor. Process Biochem. 40 (8), 2005.
  • 26. ZHU G., PENG Y., WU S., WANG S., XU S. Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process. Journal of Environmental Sciences 19 (9), 2007.
  • 27. KO H.G., PARK S.H., KIM S.H., PARK H.G., PARK W.M. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol. (Praha). 50 (2), 2005.
  • 28. LIM S.H., LEE Y.H., KANG H.W. Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms, Pleurotus spp., and Potential Use in Dye Decolorization. Mycobiology 41 (4), 2013.
  • 29. PATUREAU D., DAVISON J., BERNET N., MOLETTA R. Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. FEMS Microbiol. Ecol. 14 (1), 1994.
  • 30. PATUREAU D., BERNET N., MOLETTA R. Study of the Denitrifying Enzymatic System of Comamonas sp. Strain SGLY2 Under Various Aeration Conditions with a Particular View on Nitrate and Nitrite Reductases. Curr. Microbiol. 32 (1), 1996.
  • 31. PATUREAU D., BERNET N., MOLETTA R. Effect of oxygen on denitrification in continuous chemostat culture withComamonas sp SGLY2. J. Ind. Microbiol. Biotechnol. 16 (2), 1996.
  • 32. VAN BERKUM P., KEYSER H.H. Anaerobic Growth and Denitrification among Different Serogroups of Soybean Rhizobia. Appl. Environ. Microbiol. 49 (4), 1985.
  • 33. WANG G.,SKIPPER H.D. Identification of denitrifying rhizobacteria from bentgrass and bermudagrass golf greens. J. Appl. Microbiol. 97 (4), 2004.
  • 34. CHEN S.C., KAUFMAN M.G., MIAZGOWICZ K.L., BAGDASARIAN M., WALKER E.D. Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour. Technol. 128, 2013.
  • 35. JI D.L., YANG Q., WANG Y.Y., XI H.B. Estimation of phenanthrene degradation model by sphingobacterium multivorum isolated from municipal sludge. Fresenius Environ. Bull. 24 (1), 2015
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.