PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 58 | 1 |

Tytuł artykułu

Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Spathian (late Early Triassic) Virgin Formation of south−western Utah (USA) yields a comparatively diverse benthic fauna that flourished ~2 Ma after the end−Permian mass extinction. In this study, we present quantitative palaeoecological data, which are analysed in the context of depositional environments. This integrated approach helps to discriminate between effects of the end−Permian mass extinction event and local environmental factors on alpha diversity and ecological structure of the Virgin Fauna. Shallow subtidal environments yield the highest species richness and lowest dominance val− ues as recorded in two benthic associations, the Eumorphotis ericiusAssociation and the Protogusarella smithi Association, both ofwhich contain 20 benthic species (bivalves, gastropods, brachiopods, echinoderms, and porifers). Tidal inlet deposits yield a low diverse fauna (Piarorhynchella triassica Association) with a very high dominance of filter feeders adapted to high energy conditions.Another comparably low diverse fauna is recorded by the Bakevellia exporrecta Association, which occurs in deposits of the offshore transition zone,most likely reflecting unconsolidated substrates. A single sample contain− ing five bivalve species (Bakevellia costata Assemblage) is recorded from a marginal−marine setting. The Virgin fauna yields a bulk diversity of 30 benthic species (22 genera) of body fossils and 14 ichnogenera and, thus, represents the most di− verse marine bottom fauna known so far from the Early Triassic. Our results suggest that oceanographic conditions during the early Spathian enabled ecosystems to rediversify without major abiotic limitations. However, taxonomical differentia− tion between habitats was still low, indicating a time lag between increasing within−habitat diversity (alpha diversity) and the onset of taxonomical differentiation between habitats (beta diversity). We suggest that taxonomical habitat differentia− tion after mass extinction events starts only when within−habitat competition exceeds a certain threshold, which was not yet reached in the Spathian of the investigated area. This interpretation is an alternative to previous suggestions that the preva− lence of generalistic taxa in the aftermath of mass extinction events reflects protracted environmental stress. The onset of in− creasing beta diversity is a potential criterion for distinguishing two major recovery phases, the first ending with habitat satu− ration and the second ending with the completion of ecosystem differentiation.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.149-173,fig.,ref.

Twórcy

autor
  • Paläontologisches Institut und Museum, Universitat Zürich, Karl Schmid-Strasse 4, CH-8006 Zurich, Switzerland
autor
  • Paläontologisches Institut und Museum, Universitat Zürich, Karl Schmid-Strasse 4, CH-8006 Zurich, Switzerland
autor
  • Paläontologisches Institut und Museum, Universitat Zürich, Karl Schmid-Strasse 4, CH-8006 Zurich, Switzerland
autor
  • Paläontologisches Institut und Museum, Universitat Zürich, Karl Schmid-Strasse 4, CH-8006 Zurich, Switzerland

Bibliografia

  • Aberhan, M. 1992. Palökologie und zeitliche Verbreitung benthischer Faunengemeinschaften im Unterjura von Chile. Beringeria 5: 3–174.
  • Aberhan, M. 1994. Guild−structure and evolution of Mesozoic benthic shelf communities. Palaios 9: 516–545.
  • Aberhan, M. and Muster, H. 1997. Palaeobiology of Lower Jurassic bakevelliid bivalves from western Canada. Palaeontology 40: 799–815.
  • Alberti, F. von 1864. Überblick über die Trias, mit Berücksichtigung ihres Vorkommens in den Alpen. 353 pp. J.G. Cottasche Buchhandlung, Stuttgart.
  • Beatty, T.W., Zonneveld, J.P., and Henderson, C.M. 2008. Anomalously diverse Early Triassic ichnofossil assemblages in Northwest Pangea: a case for a shallow−marine habitable zone. Geology 36: 771–774.
  • Bissell, H.J. 1973. Permian–Triassic boundary in the eastern Great Basin area. In: A. Logan, and L.V. Hills (eds.), Permian and Triassic Systems and Their Mutual Boundary. Canadian Society of Petroleum Geologists Memoirs 2: 318–344.
  • Bambach, R.K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3: 152–167.
  • Bittner, A. 1899. Trias–Ablagerungen des Süd−Ussuri−Gebietes in der ostsibirischen Küstenprovinz. Mémoires du Comité Géologique 7: 1–35.
  • Blakey, R.C. 2011. Colorado Plateau Stratigraphy and Geology and Global and Regional Paleogeography. http://www2.nau.edu/rcb7/index.html. (Accessed February 2011).
  • Boyer, D.L., Bottjer, D.J., and Droser, M.L. 2004. Ecological Signature of Lower Triassic Shell Beds of the Western United States. Palaios 19: 372–380.
  • Bray, J.R. and Curtis. J.T. 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.
  • Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J. 2009. Good genes and good luck: ammonoid diversity and the end−Permian mass extinction. Science 325: 1118–1121.
  • Brayard, A., Nützel, A., Stephen, D.A., Bylund, K.G., Jenks, J., and Bucher, H. 2010. Gastropod evidence against the Early Triassic Lilliput effect. Geology 38: 147–150.
  • Brayard, A., Nützel, A., Kaim, A., Escarguel, G., Hautmann, M., Stephen, D.A., Bylund, K.G. Jenks, J., and Bucher, H. 2011a. Gastropod evidence against the Early Triassic Lilliput effect: REPLY. Geology 39: e233.
  • Brayard, A., Vennin, E., Olivier, N., Escarguel, G., Bylund, K.G., Jenks, J., Stephen, D.A., Hofmann, R., Goudemand, N. and Bucher, H. 2011b. Transient metazoan reefs in the aftermath of the end−Permian mass extinction. Nature Geoscience. 4: 693–697.
  • Brinkman, D.B., Russell, A.P., Eberth, D.A., and Peng, J. 2004. Vertebrate palaeocommunities of the lower Judith River Group (Campanian) of southeastern Alberta, Canada, as interpreted from vertebrate microfossil assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 213: 295–313.
  • Broglio−Loriga, C., Góczán, F., Haas, J., Lenner, K., Neri, C., Oravecz−Scheffer, A., Posenato, R., Szaboacute, I., and Tóth Makk, A. 1990. The Lower Triassic sequence of the Dolomites (Italy) and Transdanubian Mid−Mountains (Hungary) and their correlation. Memorie di Scienze Geologiche, Padova 42: 41–103.
  • Bromley R.G. 1996. Trace fossils. Biology, taphonomy and applications. 361 pp. Chapman and Hall, London.
  • Catullo, T.A. 1846. Memoria geognostico−paleozoica sulle Alpi Venete. Memorie della Società Italiana delle scienze residente in Modena 24: 1–158.
  • Cheel, R.J. and Leckie, D.A. 1993. Hummocky cross−stratification. Sedimentology Reviews 1: 103–121.
  • Clark, W.B. and Twitchell, M.W. 1915: The Mesozoic and Cenozoic Echinodermata of the United States. Monographs of the United States Geological Survey 54: 1–341.
  • Erwin, D.H. 1993. The Great Paleozoic Crisis: Life and Death in the Permian. 327 pp. Columbia University Press, New York.
  • Erwin, D.H. 2001. Lessons from the past: Biotic recoveries from mass extinctions. Proceedings of National Academy of Science 98: 5399–5403.
  • Fürsich, F.T. and Aberhan, M. 1990. Significance of time−averaging for palaeocommunity analysis. Lethaia 23: 143–152.
  • Fürsich, F.T., Freytag, S., Röhl, J., and Schmid, A. 1995. Palaeoecology of benthic associations in salinity−controlled marginal marine environments: Examples from the Lower Bathonian (Jurassic) of the Causses (southern France). Palaeogeography, Palaeoclimatology, Palaeoecology 113: 135–172.
  • Fraiser, M.L. and Bottjer, D.J. 2005. Fossil preservation during the aftermath of the end−Permian mass extinction: Taphonomic processes and palaeoecological signals. In: D.J. Over, J. Morrow, and P.B.Wignall (eds.), Understanding Late Devonian and Permian–Triassic Biotic and
  • Climatic Events: Towards an Integrated Approach. Developments in Palaeontology and Stratigraphy 20: 299–311.
  • Gahr, M.E. 2002. Palökologie des Makrobenthos im Unter−Toarc SW−Europas. Beringeria 31: 3–204.
  • Galfetti, T., Bucher, H., Brayard, A., Hochuli, P.A., Weissert, H., Guodun, K., Atudorei, V., and Guex, J. 2007. Late Early Triassic climate change: Insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 243: 394–411.
  • Goodspeed, T.H. and Lucas, S.G. 2007. Stratigraphy, sedimentology, and sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, Utah. In: S.G. Lucas and J.A. Spielmann (eds.), Triassic of the American West. New Mexico Museum of Natural History and Science Bulletin 40: 91–102.
  • Guex, J., Hungerbühler, A., Jenks, J.F., O'Dogherty, L., Atudorei, V., Taylor, D.G., Bucher, H., and Bartolini, A. 2010. Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mémoires de Géologie Lausanne 49: 82.
  • Hall, J. 1847. Palaeontology of New York, Vol. I. Natural History of New York, 1. 338 pp. Van Benthuysen, Albany.
  • Hall, J. and Whitfield, R.P. 1877. Part II. Palaeontology. In: C. King (ed.), Annual Report to the Secretary of War on the U.S. Geological Exploration of the Fortieth Parallel 4, 198–302. Government Printing Office, Washington.
  • Hallam, A. 1991. Why was there a delayed radiation after the end−Palaeozoic extinctions? Historical Biology:An International Journal of Paleobiology 5: 257–262.
  • Hammer, Ø., Harper, D.A.T., and Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (1): 9 p. http://palaeo−electronica.org/2001_1/past/issue1_01.htm
  • Hammer, Ø. and Harper, D.A.T. 2006. Paleontological data analysis. 351 pp. Blackwell, Malden.
  • Hauer, F. von 1850. Ueber die von Herrn Bergrath W. Fuchs in den Venetianer Alpen gesammelten Fossilien. Denkschriften der Akademie der Wissenschaften, Mathematisch−Naturwissenschaftliche Klasse 2: 109–126.
  • Hautmann, M. and Nützel, A. 2005. First record of a heterodont bivalve (Mollusca) from the Early Triassic: Palaeoecological significance and implications for the ‘Lazarus problem’. Palaeontology 48: 1131–1138.
  • Hautmann, M., Bucher, H., Brühwiler, T., Goudemand, N., Kaim, A., and Nützel, A. 2011. An unusually diverse mollusk fauna from the earliest Triassic of South China and its implications for benthic recovery after the end−Permian biotic crisis. Geobios 44: 71–85.
  • Hautmann, M., McGowan, A.J., Smith, A.B., and Bucher, H. 2012. Bivalves from the Spathian (Early Triassic) of southwestern Utah: Systematics and evolutionary significance. Journal of Systematic Palaeontology (published online).
  • Hautmann, M., Stiller, F., Cai, H., and Sha, J. 2008: Extinction−recovery pattern of level−bottom faunas across the Triassic–Jurassic boundary in Tibet: implications for potential killing mechanisms. Palaios 23: 711–718.
  • Heer,O. 1865. DieUrwelt der Schweiz. 622 pp. Friedrich Schultheß,Zürich.
  • Heydari, E., Arzani, N., and Hassanzadeh, J. 2008. Mantle plume: The invisible serial killer—Application to the Permian–Triassic boundary mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 264: 147–162.
  • Hofmann, R., Goudemand, N., Wasmer, M., Bucher, H., and Hautmann, M. 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end−Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 310: 216–226.
  • James, U.P. 1879. Descriptions of new species of fossils and remarks on others from the lower and upper Silurian rocks of Ohio. The Paleontologist 1 (3): 17–24.
  • Kier, P.M. 1968. The Triassic echinoids of North America. Journal of Paleontology 42: 1000–1006.
  • Kiparisova, L.D. 1938. Lower Triassic bivalves of the Ussuri region [in Russian]. Trudy Geologičeskogo Instituta 7: 197–311.
  • Klein, G.D. 1971. A sedimentary model for determining paleotidal range. Geological Society of America Bulletin 82: 2585–2592.
  • Komatsu, T., Huyen, D.T., and Huu, N.D. 2010. Radiation of Middle Triassic bivalve: Bivalve assemblages characterized by infaunal and semiinfaunal burrowers in a storm−and wave−dominated shelf, An Chau Basin, North Vietnam. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 190–204.
  • Kreisa, R.D. and Moiola, R.J. 1986. Sigmoidal tidal bundles and othertide−generated sedimentary structures of the Curtis Formation, Utah. Geological Society of America Bulletin 97: 381–387.
  • Lepsius, R. 1878. Das westliche Südtirol. 375 pp. Verlag Wilhelm Hertz, Berlin.
  • Lucas, S.G., Krainer, K., and Milner, A.R.C. 2007. The Type section and age of the Timpoweap Member and the stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. In: S.G. Lucas and J.A. Spielmann (eds.), Triassic of the American West.New Mexico Museum of Natural History and Science Bulletin 40: 109–118.
  • Ludvigsen, R. and Westrop, S.R. 1983. Trilobite biofacies of the Cambrian–Ordovician boundary interval in northern North−America. Alcheringa 7: 301–319.
  • MacArthur R.H. 1972. Geographical Ecology. 269 pp. Harper and Row, New York.
  • Mángano, M.G. and Buatois, L.A. 2004. Ichnology of Carboniferous tide-influenced environments and tidal flat variability in the North American Midcontinent. Geological Society, London, Special Publications 228: 157–178.
  • Mansfield, G.R. 1927. Geography, geology, and mineral resources of part of southeastern Idaho. U.S. Geological Survey Professional Papers 152: 1–453.
  • Mata, S.A. and Bottjer, D.J. 2011. Origin of Lower Triassic microbialites in mixed carbonate−siliciclastic successions: Ichnology, applied stratigraphy, and the end−Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 300: 158–178.
  • McGowan, A.J., Smith, A.B., and Taylor, P.D. 2009. Faunal diversity, heterogeneity and body size in the Early Triassic: testing post−extinction paradigms in the Virgin Limestone of Utah, USA. Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia 56: 859–872.
  • McIlroy, D. 2004. Some ichnological concepts, methodologies, applications and frontiers. Geological Society, London, Special Publications 228: 3–27.
  • Morisita, M. 1959: Measuring of interspecific association and similarity between communities. Memoires of the Faculty of Science, Kyushu University, Series E. Biology 3: 65–80.
  • Mundil, R., Ludwig, K.R., Metcalfe, I., and Renne, P.R. 2004. Age and Timing of the Permian Mass Extinctions: U/Pb Dating of Closed−System Zircons. Science 305: 1760–1763.
  • Münster, G. Graf zu 1841. Beiträge zur Petrefacten−Kunde. IV. Beschreibung und Abbildung der in den Kalkmergelschichten von St. Cassian gefundenen Versteinerungen. 152 pp. Buchner’sche Buchhandlung, Bayreuth.
  • Muster, H. 1995. Taxonomie und Paläobiogeographie der Bakevelliidae (Bivalvia). Beringeria 14: 1–161.
  • Myrow, P.M. 1992. Pot and gutter casts from the Chapel Island Formation, Southeast Newfoundland. Journal of Sedimentary Research 62: 992–1007.
  • NACSN (North American Commission on Stratigraphic Nomenclature). 2005. North American stratigraphic code. AAPG Bulletin 89: 1547–1591.
  • Neri, C. and Posenato, F. 1985. New biostratigraphical data on uppermost Werfen Formation of western Dolomites (Trento, Italy). Geologisch−Paläontologische Mitteilungen Innsbruck 14: 83–107.
  • Newell, N.D. and Kummel, B. 1942. Lower Eo−Triassic stratigraphy, western Wyoming and southeast Idaho. GSA Bulletin 53: 937–995.
  • Neyman, A.A. 1967. Limits to the application of the ‘trophic group’ concept in benthic studies. Oceanology, Academy of Sciences of the USSR 7: 49–155.
  • Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A., and Guex, J. 2007. New Early to Middle Triassic U–Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters 243: 463–475.
  • Perry, D.G. and Chatterton, B.D.E. 1979. Late Early Triassic brachiopod and conodont fauna, Thaynes Formation, southeastern Idaho. Journal of Paleontology 53:307–319.
  • Pianka E.R. 1974. Niche Overlap and Diffuse Competition. Proceedings of National Academy of Science 71: 2141–2145.
  • Poborski, S.J. 1954. Virgin Formation (Triassic) of the St. George, Utah, Area. Geological Society of America Bulletin 65: 971–1006.
  • Posenato,R. 2008. Patterns of bivalve biodiversity fromEarly to MiddleTriassic in the Southern Alps (Italy): Regional vs. global events. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 145–159.
  • Pruss, S.B., Corsetti, F.A., and Bottjer, D.J. 2005. The unusual sedimentary rock record of the Early Triassic: A case study from the southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 33–52.
  • Pruss, S.B. and Bottjer, D.J. 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end−Permian mass extinction. Palaios 19: 551–564.
  • Pruss, S.B. and Payne, J.L. 2009. Early Triassic microbial spheroids in the Virgin Limestone Member of the Moenkopi Formation, Nevada, USA. Palaios 24: 131–136.
  • Pruss, S.B., Payne, J.L., and Bottjer, D.J. 2007. Placunopsis bioherms: The first metazoan buildups following the end−Permian mass extinction. Palaios 22: 17–23.
  • Reeside, J.B. and Bassler, H. 1922. Stratigraphic sections in southwestern Utah and northwestern Arizona. U.S. Geological Survey Professional Paper 129−D: 53–77.
  • Reif, D.M. and Slatt, R.M. 1979. Red bed members of the Lower Triassic Moenkopi Formation, southern Nevada; sedimentology and paleogeography of a muddy tidal flat deposit. Journal of Sedimentary Research 49: 869–889.
  • Richter, R. 1937. Marken und Spuren aus allen Zeiten. I–II. Senckenbergiana 19: 150–163.
  • Rieth, A. 1932. Neue Funde spongeliomorpher Fucoiden aus den Jura Schwabens. Geologische und Paläontologische Abhandlungen 19: 257–294.
  • Savrda, C.E. and Bottjer, D.J. 1986. Trace−fossil model for reconstruction of paleo−oxygenation in bottom waters. Geology 14: 3–6.
  • Schlotheim, E.F. von 1820. Die Petrefactenkunde auf ihrem jetzigem Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier− und Pflanzenreichs der Vorwelt erläutert. Erste Abtheilung. Das Thierreich. 437 pp. Beckersche Buchhandlung, Gotha.
  • Schindewolf, O.H. 1928: Studien aus dem Marburger Buntsandstein III–VI, Senckenbergiana 10: 16–54.
  • Schmidt, M. 1928. Die Lebewelt unserer Trias. 461 pp. Rau, Öhringen.
  • Schmidt, M. 1938. Die Lebewelt unserer Trias; Nachtrag. 144 pp. Rau, Öhringen.
  • Schubert, J.K. and Bottjer, D.J. 1995. Aftermath of the Permian–Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116: 1–39.
  • Seilacher,A. 1967. Bathymetry of trace fossils. Marine Geology 5: 413–428.
  • Sepkoski, J.J. Jr. 1988. Alpha, beta or gamma: Where did all the diversity go. Paleobiology 14: 221–234.
  • Sokal, R. and Michener, C. 1958. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38: 1409–1438.
  • Stiller, F. 2001. Fossilvergesellschaftungen, Paläoökologie und paläosynökologische Entwicklung im Oberen Anisium (Mittlere Trias) von Qingyan, insbesondere Bangtoupo, Provinz Guizhou, Südwestchina. Münstersche Forschungen zur Geologie und Paläontologie 92: 1–523.
  • Szulc, J. 2007. Sponge−microbial stromatolites and coral−sponge reef recovery in the Triassic of the western Tethys domain. In: S.G. Lucas and J.A. Spielmann (eds.), The Global Triassic. New Mexico Museum of Natural History and Science Bulletin 41: 402.
  • Twitchett, R.J. and Wignall, P.B. 1996. Trace fossils and the aftermath of the Permo−Triassic mass extinction: evidence from northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 124: 137–151.
  • Wasmer, M., Hautmann, M., Hermann, E., Ware, D., Roohi, G., Rehman, K., Yassen, A., and Bucher, H. 2012. Olenekian (Early Triassic) bivalves from the Salt Range and Surghar Range, Pakistan. Palaeontology 55: 1043–1073.
  • Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.
  • Whittaker, R.H. 1975. Communities and ecosystems. 385 pp. Macmillan; Collier Macmillan, New York.
  • Wignall, P.B. and Hallam, A. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 21–46.
  • Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia 50: 296–302.
  • Zieten, C.H. von 1830. Die Versteinerungen Württembergs. 102 pp. Verlag & Lithographie des Werkes Unsere Zeit, Stuttgart.
  • Zonneveld, J.−P., Pemberton, S.G., Saunders, T.D.A., and Pickerill, R.K. 2002. Large, robust Cruziana from the Middle Triassic of northeastern British Columbia: Ethologic, biostratigraphic, and paleobiologic significance. Palaios 17: 435–448.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b93c9247-b035-4db1-94ff-832568dc0893
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.