PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 1 |

Tytuł artykułu

Extracellular matrix surface network is associated with non-morphogenic calli of Helianthus tuberosus cv. Albik produced from various explants

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Helianthus tuberosus is economically important species. To improve characters of this energetic plant via genetic modification, production of callus tissue and plant regeneration are the first steps. A new, potentially energetic cultivar Albik was used in this study to test callus induction and regeneration. Callus was produced on leaves, petioles, apical meristems and stems from field-harvested plants but was totally non-morphogenic. Its induction started in the cortex and vascular bundles as confirmed by histological analysis. The surface of heterogeneous callus was partially covered with a membranous extracellular matrix surface network visible in scanning and transmission electron microscopies. The results clearly indicate that: (i) the morphogenic capacity of callus in topinambur is genotype dependent, (ii) cv. Albik of H. tuberosus proved recalcitrant in in vitro regeneration, and (iii) extracellular matrix surface network is not a morphogenic marker in this cultivar.

Wydawca

-

Rocznik

Tom

83

Numer

1

Opis fizyczny

p.67-73,fig.,ref.

Twórcy

autor
  • Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
  • Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
autor
  • Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
  • Department of Plant Cytology and Embryology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
autor
  • Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
autor
  • Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
  • Department of Plant Cytology and Embryology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
autor
  • Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland

Bibliografia

  • 1. Ma XY, Zhang LH, Shao HB, Xu G, Zhang F, Ni FT, et al. Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant planthas high adaptability and multiple-use values. J Med Plant Res.2011;5(8):1272–1279.
  • 2. Li XD, Miao FP, Ji NY. Two new epoxysteroids from Helianthus tuberosus. Molecules. 2011;16(12):8646–8653. http://dx.doi.org/10.3390/ molecules16108646
  • 3. Gutierrez Pesce P, Bizzarri M, Rugini E, de Pace C. In vitro microtuberization for simulating the developmental physiology of undergroundstorage organ in Helianthus tuberosus. In: Proceedings of the jointmeeting AGI-SIBV-SIGA. Assisi: SIGA; 2011. p. 6A.38.
  • 4. Volk GM, Richards K. Preservation methods for Jerusalem artichoke cultivars. HortScience. 2006;41(1):80–83.
  • 5. Pugliesi C, Megale P, Cecconi F, Baroncelli S. Organogenesis and embryogenesis in Helianthus tuberosus and in the interspecific hybrid Helianthus annuus × Helianthus tuberosus. Plant Cell Tissue Organ Cult. 1993;33(2):187–193. http://dx.doi.org/10.1007/BF01983233
  • 6. Bianchi R, Fambrini M, Pugliesi C. Morphogenesis in Helianthus tuberosus: genotypic influence and increased totipotency in previouslyregenerated plants. Biol Plant. 1999;42(4):515–523. http://dx.doi.org/10.1023/A:1002698511484
  • 7. Fambrini M, Cionini G, Conti A, Michelotti V, Pugliesi C. Origin and development in vitro of shoot buds and somatic embryos from intact roots of Helianthus annuus × H. tuberosus. Ann Bot. 2003;92(1):145– 151. http://dx.doi.org/10.1093/aob/mcg116
  • 8. Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, et al. Ultrastructural changes in coconut calli associated with theacquisition of embryogenic competence. Ann Bot. 2001;88(1):9–18.http://dx.doi.org/10.1006/anbo.2001.1408
  • 9. Šamaj J, Baluška F, Bobák M, Volkmann D. Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep. 1999;18(5):369–374. http://dx.doi.org/10.1007/ s002990050588
  • 10. Blehová A, Bobák M, Šamaj J, Hlinková E. Changes in the formation of an extracellular matrix surface network during early stagesof indirect somatic embryogenesis in Drosera spathulata. Acta BotHung. 2010;52(1):23–33. http://dx.doi.org/10.1556/ABot.52.2010.1-2.3
  • 11. Konieczny R, Bohdanowicz J, Czaplicki AZ, Przywara L. Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell Tissue Organ Cult. 2005;83(2):201–208. http:// dx.doi.org/10.1007/s11240-005-5771-9
  • 12. Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Świerczyńska J, Góralski G, Ślesak H, Bohdanowicz J. Ultrastructure and histochemicalanalysis of extracellular matrix surface network in kiwifruit endosperm-derived callus culture. Plant Cell Rep. 2008;27(7):1137–1145.http://dx.doi.org/10.1007/s00299-008-0534-9
  • 13. Bobák M, Šamaj J, Hlinková E, Hlavačka A, Ovečka M. Extracellular matrix in early stages of direct somatic embryogenesis in leaves ofDrosera spathulata. Biol Plant. 2003;47(2):161–166. http://dx.doi.org/10.1023/B:BIOP.0000022245.64929.8b
  • 14. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 1962;15(3):473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • 15. R Core Team. R: a language and environment for statistical computing [Internet]. 2012 [cited 2013 Oct 20]; Available from: http:// www.R-project.org
  • 16. Fambrini M, Cionini G, Pugliesi C. Development of somatic embryos from morphogenetic cells of the interspecific hybrid Helianthus annuus× Helianthus tuberosus. Plant Sci. 1996;114(2):205–214. http://dx.doi.org/10.1016/0168-9452(95)04320-9
  • 17. Fambrini M, Cionini G, Pugliesi C. Acquisition of high embryogenic potential in regenerated plants of Helianthus annuus × H. tuberosus. Plant Cell Tissue Organ Cult. 1997;51(2):103–110. http://dx.doi.org/10.1023/A:1005965628512
  • 18. Gamburg KZ, Vysotskaya EF, Gamanets LV. Microtuber formation in micropropagated Jerusalem artichoke (Helianthus tuberosus). Plant Cell Tissue Organ Cult. 1998;55(2):115–118. http://dx.doi. org/10.1023/A:1006127319351
  • 19. Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Tuleja M, Ślesak H, Kapusta P, Marcińska I, et al. Genotype-dependent efficiency of endosperm development in culture of selected cereals: histological and ultrastructural studies. Protoplasma. 2013;250(1):361–369. http:// dx.doi.org/10.1007/s00709-012-0419-1
  • 20. Ślesak H, Góralski G, Pawłowska H, Skucińska B, Popielarska-Konieczna M, Joachimiak AJ. The effect of genotype on a barley scutellaculture. Histological aspects. Cent Eur J Biol. 2013;8(1):30–37. http://dx.doi.org/10.2478/s11535-012-0113-5
  • 21. Fukuda H. Plant cell biology: signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol. 2004;5(5):379–391. http://dx.doi.org/10.1038/nrm1364
  • 22. Jura J, Włoch W, Kojs P, Wilczek A, Szendera W. Current trends in the structural investigations of the vascular cambium. Bull Bot Gard. 2005;14:43–47.
  • 23. Rose RJ, Wang XD, Nolan KE, Rolfe BG. Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene. J Exp Bot. 2006;57(10):2227–2235. http://dx.doi.org/10.1093/jxb/erj187
  • 24. Wang XD, Nolan KE, Irwanto RR, Sheahan MB, Rose RJ. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot. 2011;107(4):599–609. http://dx.doi.org/10.1093/aob/mcq269
  • 25. Šamaj J, Bobák M, Kubošníková D, Krištín J, Kolarik E, Ovečcka M, et al. Bundle sheath cells are responsible for direct root regenerationfrom leaf explants of Helianthus occidentalis L. J Plant Physiol.1999;154(1):89–94. http://dx.doi.org/10.1016/S0176-1617(99)80322-8
  • 26. Dubois T, Dubois J, Guedira M, Diop A, Vasseur J. SEM characterization of an extracellular matrix around somatic proembryos in roots of Cichorium. Ann Bot. 1992;70(2):119–124.
  • 27. Popielarska-Konieczna M, Bohdanowicz J, Starnawska E. Extracellular matrix of plant callus tissue visualized by ESEM and SEM. Protoplasma. 2010;247(1-2):121–125. http://dx.doi.org/10.1007/s00709-010-0149-1
  • 28. Mazarei M, Al-Ahmad H, Rudis MR, Joyce BL, Stewart CN. Switchgrass (Panicum virgatum L.) cell suspension cultures: establishment, characterization, and application. Plant Sci. 2011;181(6):712–715.http://dx.doi.org/10.1016/j.plantsci.2010.12.010
  • 29. Namasivayam P, Skepper J, Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napusspp. oleifera embryogenic tissue. Plant Cell Rep. 2006;25(9):887–895.http://dx.doi.org/10.1007/s00299-006-0122-9
  • 30. Šamaj J, Bobák M, Blehová A, Krištin J, Auxtová-Šamajová O. Developmental SEM observations on an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma. 1995;186(1–2):45–49. http://dx.doi.org/10.1007/BF01276934
  • 31. Šamaj J, Bobák M, Blehová A, Pret’ová A. Importance of cytoskeleton and cell wall in somatic embryogenesis. In: Mujib A, Šamaj J, editors.Somatic embryogenesis. Berlin: Springer; 2006. p. 35–50. (vol 2).http://dx.doi.org/10.1007/7089_024
  • 32. Lai KS, Yusoff K, Maziah M. Extracellular matrix as the early structural marker for Centella asiatica embryogenic tissues. Biol Plant. 2011;55(3):549–553. http://dx.doi.org/10.1007/s10535-011-0123-6
  • 33. Konieczny R, Świerczyńska J, Czaplicki AZ, Bohdanowicz J. Distribution of pectin and arabinogalactan protein epitopes duringorganogenesis from androgenic callus of wheat. Plant Cell Rep.2007;26(3):355–363. http://dx.doi.org/10.1007/s00299-006-0222-6
  • 34. Pilarska M, Czaplicki AZ, Konieczny R. Patterns of pectin epitope expression during shoot and root regeneration in androgenic cultures of two wheat cultivars. Acta Biol Crac Ser Bot. 2007;49:69–72.
  • 35. Xu C, Zhao L, Pan X, Šamaj J. Developmental localization and methylesterification of pectin epitopes during somatic embryogenesisof banana (Musa ssp. AAA). PLoS ONE. 2011;6(8):e22992. http://dx.doi.org/10.1371/journal.pone.0022992
  • 36. Pilarska M, Knox JP, Konieczny R. Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface networkand somatic embryogenesis and callogenesis in Trifolium nigrescensViv. Plant Cell Tissue Organ Cult. 2013;115(1):35–44. http://dx.doi.org/10.1007/s11240-013-0337-8

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b9107daf-c760-4ad3-aa47-773bd15bc358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.