PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 44 | 3 |

Tytuł artykułu

Molecular cloning, expression, and in silico analysis of a long type peptidoglycan recognition protein from half-smooth tongue sole, Cynoglossus semilaevis (Actinopterygii: Pleuronectiformes: Cynoglossidae)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Half-smooth tongue sole, Cynoglossus semilaevis Günther, 1873, a marine teleost, is an important aquaculture species of great economic value. In recent years, its farm production increase coincided, however, with the number of reported cases of bacterial diseases. Further understanding of its immune response to bacterial pathogens can provide more information on pathogenesis and how to prevent disease using immune-related strategy. Peptidoglycan (PGN) recognition proteins (PGRPs) play important roles in the innate immunity against bacterial infection. In the presently reported study, a long type PGRP in half-smooth tongue sole (csPGRP-L) was cloned, and its sequence features, PGN binding ability, and mRNA expressions in different tissues after bacterial infection were also analyzed. Materials and Methods. The full length of csPGRP-L cDNA was obtained by RT-PCR and RACE-PCR method, and its sequence features were analyzed by multiple sequence alignment and phylogenetic tree. Meanwhile, its 3-D structure and PGN binding ability were analyzed by comparative modelling and molecular docking methods. Furthermore, the expressions of csPGRP-L in different tissues of healthy fish and fish infected with Streptococcus dysgalactiae were examined using quantitative real-time PCR method. Results. The full length of csPGRP-L cDNA was 1509 bp (GenBank accession No. HQ909441), with a 1446 bp of open reading frame (ORF) encoding 481 amino acids (aa), which possessed several conserved PGRP family features, e.g., a typical PGRP domain at its C-terminal, 3-D structure. Molecular docking showed that the csPGRP-L also possessed the PGN-binding ability. csPGRP-L was constitutive expressed in all the selected tissues from healthy fish and following S. dysgalactiae infection its expression was up-regulated in a tissue-specific expression pattern. Conclusion. The gene we cloned was exactly the homologue of vertebrates’ long type PGRP in half-smooth tongue sole which was confirmed by several analyses and the up-regulation of csPGRP-L after bacterial infection suggest that csPGRP-L plays important role in antibacterial and anti-infective action.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.181-190,fig.,ref.

Twórcy

autor
  • Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
autor
  • Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
autor
  • Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
autor
  • Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
autor
  • Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Bibliografia

  • Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22 (2): 195–201. DOI: 10.1093/bioinformatics/bti770
  • Chang M.X., Nie P. 2008. RNAi suppression of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signalling pathway and caused increased susceptibility to Flavobacterium columnare. Veterinary Immunology and Immunopathology 124 (3–4): 295–301. DOI:10.1016/j.vetimm.2008.04.003
  • Chang M.X., Nie P., Wei L.L. 2007. Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with finding of multiple PGRP homologs in teleost fish. Molecular Immunology 44 (11): 3005–3023. DOI:10.1016/j.molimm.2006.12.029
  • Cho J.H., Fraser I.P., Fukase K., Kusumoto S., Fujimoto Y.,Stahl G.L., Ezekowitz R.A. 2005. Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106 (7): 2551–2558. DOI: 10.1182/blood-2005-02-0530
  • Clewley J.P., Arnold C. 1997. MEGALIAN. The multiple alignment module of LASERGENE. Pp. 119–120. In:Swindell S.R. (ed.) Sequence data analysis guidebook. Book series: Methods in Molecular Biology Vol. 70. Humana Press, Totowa, NJ, USA. DOI: 10.1385/0-89603-358-9:119
  • Dziarski R. 2004. Peptidoglycan recognition proteins (PGRPs).Molecular Immunology 40 (12): 877–886. DOI:10.1016/j.molimm.2003.10.011
  • Dziarski R., Gupta D. 2006. Mammalian PGRPs: novel antibacterial proteins. Cellular Microbiology 8 (7): 1059–1069.DOI: 10.1111/j.1462-5822.2006.00726.x
  • Guan R.,Malchiodi E.L.,Wang Q., Schuck P., Mariuzza R.A.2004. Crystal structure of the C-terminal peptidoglycanbinding domain of human peptidoglycan recognition protein Iα. Journal of Biological Chemistry 279 (30): 31873–31882. DOI: 10.1074/jbc.M404920200
  • Janeway C.A.jr., Medzhitov R. 2002. Innate immune recognition.Annual Review of Immunology 20: 197–216. DOI: 10.1146/annurev.immunol.20.083001.084359
  • Jang J.H., Kim H., Cho J.H. 2013. Rainbow trout peptidoglycan recognition protein has an anti-inflammatory function In liver cells. Fish and Shellfish Immunology 35 (6): 1838–1847. DOI: 10.1016/j.fsi.2013.09.015
  • Johansson M.U., Zoete V., Michielin O., Guex N. 2012.Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics 13: 173. DOI: 10.1186/1471-2105-13-173
  • Kim M.-S., Byun M., Oh B.-H. 2003. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunology 4 (8): 787–793. DOI:10.1038/ni952
  • Kim M.Y., Jang J.H., Lee J.-W., Cho J.H. 2010. Molecular cloning and characterization of peptidoglycan recognition proteins from the rockfish, Sebastes schlegeli. Fish and Shellfish Immunology 28 (4): 632–639. DOI:10.1016/j.fsi.2009.12.023
  • Kumar S., Nei M., Dudley J., Tamura K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9 (4): 299–306. DOI: 10.1093/bib/bbn017
  • Kumar S., Roychowdhury A., Ember B., Wang Q., Guan R., Mariuzza R.A., Boons G.-J. 2005. Selective recognition of synthetic lysine and meso-diaminopimelic acid-type peptidoglycan fragments by human peptidoglycan recognition proteins Iα and S. Journal of Biological Chemistry 280 (44):37005–37012. DOI: 10.1074/jbc.M506385200
  • Kurowski M.A., Bujnicki J.M. 2003. GeneSilico protein structure prediction meta-server. Nucleic Acids Research 31 (13): 3305–3307. DOI: 10.1093/nar/gkg557
  • Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26 (2): 283–291. DOI: 10.1107/S0021889892009944
  • Leone P., Bischoff V., Kellenberger C., Hetru C., Royet J.,Roussel A. 2008. Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan. Molecular Immunology 45 (9): 2521–2530. DOI: 10.1016/j.molimm.2008.01.015
  • Li J.H., Chang M.X., Xue N.N., Nie P. 2013. Functional characterization of a short peptidoglycan recognition protein, PGRP5 in grass carp Ctenopharyngodon idella. Fish and Shellfish Immunology 35 (2): 221–230. DOI: 10.1016/j.fsi.2013.04.025
  • LiM.-F., ZhangM.,Wang C.-L., Sun L. 2012. A peptidoglycan recognition protein from Sciaenops ocellatus is a zinc amidase and a bactericide with a substrate range limited to Gram-positive bacteria. Fish and Shellfish Immunology 32 (2): 322–330.DOI: 10.1016/j.fsi.2011.11.024
  • Li X.,Wang S.,Qi J., Echtenkamp S.F., Chaterjee R.,Wang M., Boons G.-J., Dziarski D., Gupta D. 2007. Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections. Immunity 27 (3): 518–529. DOI: 10.1016/j.immuni.2007.07.020
  • Lim J.-H., Kim M.-S., Kim H.-E., Yano T., Oshima Y., Aggarwal K., Goldman W.E., Silverman N., Kurata S.,Oh B.-H. 2006. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. Journal of Biological Chemistry 281 (12): 8286–8295. DOI:10.1074/jbc.M513030200
  • Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25 (4): 402–408. DOI: 10.1006/meth.2001.1262
  • MellrothP.,Karlsson J.,Håkansson J., Schulz N.,Goldman W.E., Steiner H. 2005. Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proceeding of the National Academy of Sciences of the United States of America 102 (18): 6455–6460. DOI: 10.1073/pnas.0407559102
  • Michel T., Reichhart J.-M., Hoffmann J.A., Royet J. 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414 (6865): 756–759. DOI: 10.1038/414756a
  • Montaño A.M., Tsujino F., Takahata N., Satta Y. 2011.Evolutionary origin of peptidoglycan recognition proteins In vertebrate innate immune system. BMC Evolutionary Biology 11: 79. DOI: 10.1186/1471-2148-11-79
  • Park M.A., Kwon M.G., Hwang J.Y., Jung S.H., Kim D.-W., Park J.-Y., Kim J.-S., Na Y.-J., Kim M.-Y., Kim D.-S., Chae S.-H., Seo J.S. 2013. Genome sequence of Streptococcus parauberis strain KCTC11980, isolated from diseased Paralichthys olivaceus. Genome Announcements 1 (5): e00780-13. DOI: 10.1128/genomeA.00780-13
  • Qi Z.-T., Zhang Q.-H., Wang Z.-S., Wang A.-M., Huang B., Chang M.-X., Nie P. 2011. Cloning and expression analysis of a long type peptidoglycan recognition protein (PGRP-L) from Xenopus tropicalis. Zoological Research 32 (4): 371–378.
  • Shi J., Blundell T.L., Mizuguchi K. 2001. FUGUE: sequencestructure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. Journal of Molecular Biology 310 (1): 243–257. DOI: 10.1006/jmbi.2001.4762
  • Song W., Li Y., Zhao Y., Liu Y., Niu Y., Pang R., Miao G., Liao X., Shao C., Gao F., Chen S. 2012. Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One 7 (12): e52097. DOI:10.1371/journal.pone.0052097
  • Takehana A., Katsuyama T., Yano T., Oshima Y., Takada H., Aigaki T., Kurata S. 2002. Overexpression of a patternrecognition receptor, peptidoglycan recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proceeding of the National Academy of Sciences of the United States of America 99 (21): 13705–13710. DOI: 10.1073/pnas.212301199
  • Takehana A., Yano T., Mita S., Kotani A., Oshima Y.,Kurata S. 2004. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. The EMBO Journal 23 (23): 4690–4700. DOI: 10.1038/sj.emboj.7600466
  • Yang W.M., Li A.H. 2009. Isolation and characterization of Streptococcus dysgalactiae from diseased Acipenser schrenckii. Aquaculture 294 (1–2): 14–17. DOI: 10.1016/j.aquaculture.2009.05.018
  • Zhang Y. 2008. I-TASSER server for protein 3D structure prediction.BMC Bioinformatics 9: 40. DOI: 10.1186/1471-2105-9-40

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b908c51e-1608-4215-b2ae-bb2cd4d75308
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.