PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 09 | 1 |

Tytuł artykułu

Effect of fibrinogen degradation products on various stages of the fibrinolytic process

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Over-activation of the fibrinolytic system may result in proteolytic destruction of fibrinogen. However, the effect of the degradation products formed during fibrinogenolysis on fibrinolytic process and plasminogen/plasmin properties remains unclear. To investigate this effect and its mechanism, the ability of fibrinogen fragments E and D to act on plasminogen and tPA binding, proenzyme activation, fibrin clot lysis and plasmin inhibition by plasma α2-antiplasmin, were studied. It was found that early product fragment EE binds to plasminogen and tissue-type plasminogen activator and enhances plasminogen conversion into plasmin. C-terminal lysine residues of all 3 chains pair and 16 or 23 amino acid residues of Aα- chain are essential for this process. C-terminal lysines of fragment E Aα- and γ-chains and lysine-binding site of tPA kringle 2 are responsible for the interaction between these proteins. Binding of fragment E to plasminogen is provided by N-terminal Aα1–19 and C-terminal Bβ120–122 regions. Late plasmic fibrinogen degradation product fragment EL loses the ability to potentiate plasmin generation but can bind proenzyme and its activator. Fragment D has no binding properties towards plasminogen and tPA. None of fibrinogen fragments protects plasmin from α2-antiplasmin inhibition. It is concluded that at over-activation of the fibrinolytic system and subsequent fibrinogenolysis, the products of fibrinogen degradation, can bind plasminogen and tPA and potentiate generation of plasmin, which will be neutralized under the normal level of the plasmin inhibitor.

Wydawca

-

Rocznik

Tom

09

Numer

1

Opis fizyczny

p.18-22,fig.,ref.

Twórcy

autor
  • Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha St., 01601, Kyiv, Ukraine
  • Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha St., 01601, Kyiv, Ukraine
  • Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha St., 01601, Kyiv, Ukraine
  • Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha St., 01601, Kyiv, Ukraine
autor
  • Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha St., 01601, Kyiv, Ukraine

Bibliografia

  • 1. Yakovlev S, Makogonenko E, Kurochkina N, et al. Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogenbindingsites. Biochemistry 2000; 39: 15730–15741.
  • 2. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005; 129(3): 307–321.
  • 3. Levi M, Shcultz M, van der Poll T. Coagulation biomarkers in critically ill patients. Crit Care Clin. 2011; 27(2): 281–297.
  • 4. Rodgers G M. Acquired coagulation disorders. In: Arber AD, Glader B, at al. Wintrobe’s Clinical Hematology. Twelve ed. Lippincott Williams& Wilkins; 2013: 1187–1217.
  • 5. Hasan AK, Chang WS, Budzynsky A. Binding of Fibrin Fragments to One-Chain and Two-Chain Tissue-Type Plasminogen Activator. Blood.1992; 79(9): 2313–2321.
  • 6. Weitz JL, Leslie B, Ginsberg J. Soluble Fibrin Degradation Products Potentiate Tissue Plasminogen Activator-induced FibrinogenProteolysis. J Clin Invest. 1991; 87: 1082–1090.
  • 7. Varetska TV. Microgeterogenety of fibrinogen. Cryofibrinogen. Ukr Biochem Zhurn. 1960; 32: 13–24.
  • 8. Deutsch DG, Mertz ET. Plasminogen purification from human plasma by affinity chromatography. Science 1970; 170: 1095–1096.
  • 9. Belitser VA, Platonova TN, Musyalkovskaya AA. Inhibition of fibrinmonomer polymerization by products of fibrinolysis – the fragmentsD and D-D. DAN SSSR 1986; 291: 1001–1004.
  • 10. Pozdnjakova TM, Musjalkovskaja AA, Ugarova TP, Protvin DO, Kotsjuruba VN. On the properties of fibrin monomer prepared fromfibrin clot with acetic acid. Thromb Res. 1979; 16: 283–288.
  • 11. Bouvier SA, Beretta-Piccoli M, Giacometti N. Light scattering measurements of polimerization and depolimerization of fibrin: atool for studing coagulation and fibrinolysis. Progress in chemicalfibrinolysis and thrombolysis. N.Y.: Raven Press; 1975; 1: 281–288.
  • 12. Nieuwenhuizen W. Fibrin-mediated plasminogen activation. Ann N Y Acad Sci. 2001; 936: 237–246.
  • 13. Kudinov SA, Andrianov SI, Lezhen TI. Binding of lys-plasminogen to E-fragment of fibrinogen. Biokhimiia1988; 53(10): 1684–1690.
  • 14. Grinenko TV, Tret’iachenko VG, Skomorovskaia EV, Kudinov SA. Binding of Glu-plasminogen by fibrinogen and byproducts of itsproteolysis. 1989; 54(2): 213–220.
  • 15. Collen D, Kudryk B, Hessel B, Blomback B. Primary structure of human fibrinogen and fibrin. Isolation and partial characterization of chainsof fragment D J Biol Chem. 1975; 250(15): 5808–5817.
  • 16. Garlund B. Human fibrinogen amino acid sequence of fragment E and adjacent structures in the Aa- and Bb-chain. Thromb Res. 1977;10(5): 689–702.
  • 17. Bakker AH, Weening-Verhoeff EJ, Verheijen JH. The role of the lysyl binding site of tissue-type plasminogen activator in the interactionwith a forming fibrin clot. J Biol Chem. 1995; 270(21): 12355–12360.
  • 18. Stewart RJ, Fredenburgh JC, Rischke JA, Bajzar L, Weitz JI. Thrombinactivable fibrinolysis inhibitor attenuates (DD)E-mediated stimulationof plasminogen activation by reducing the affinity of (DD)E for tissueplasminogen activator. A potential mechanism for enhancing the fibrinspecificity of tissue plasminogen activator. J Biol Chem. 2000; 275(47):36612–36620.
  • 19. Paul B. Coughlin. Antiplasmin. The forgotten serpin? FEBS Journal. 2005; 272: 4852–4857.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b87c984d-21ff-41ad-9d60-40a219c8359a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.