Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 30 | 1 |
Tytuł artykułu

Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency

Treść / Zawartość
Warianty tytułu
Języki publikacji
In order to assess symbiotic activity (the nodules integrity and the iron use efficiency) in common bean (Phaseolus vulgaris L.) under low iron availability,the growth of plants and nodules, the concentration of leghaemoglobin and malondialdehyde, and activity of nitrogenase, catalase, peroxidase and superoxide dismutase were analysed in two (contrasting) common bean varieties subjected to iron deficiency. Results show that nitrogen fixation and leghaemoglobin accumulation decreased at limiting iron availability while malondialdehyde concentration increased under these conditions. The tolerant variety to iron deficiency, ARA14, was clearly less affected than the sensitive one, Coco blanc. A significant stimulation of peroxidase (POD) activity was observed in ARA14 under iron deficiency. At the same conditions, SOD and CAT activities in ARA14 plants were maintained at high level. It was also found that the iron use efficiency for leghaemoglobin accumulation, SOD, CAT and POD activities were critical for the protection of symbiotic system against oxidative burst and for the maintaining of an optimal functioning of N2 fixing system.
Słowa kluczowe
Opis fizyczny
  • Laboratory of Plant Adaptation to Abiotic Stress, Centre of Biotechnology, Borj Cedria Ecopark, BP 901, 2050 Hammam-Lif, Tunisia
  • Laboratory of Plant Adaptation to Abiotic Stress, Centre of Biotechnology, Borj Cedria Ecopark, BP 901, 2050 Hammam-Lif, Tunisia
  • Laboratory of Plant Adaptation to Abiotic Stress, Centre of Biotechnology, Borj Cedria Ecopark, BP 901, 2050 Hammam-Lif, Tunisia
  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126 Babber S, Sheokand S, Malik S (2000) Nodule structure and functioning in chickpea (Cicer arietinum) as affected by salt stress. Biol Plant 43:269–273
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and applicable to acrylamide gels. Anal Biochem 44:276–287
  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147
  • Becana M, Dalton DA, Moran JF, Iturbe-Ormaetexe I, Matamoros MA, Ubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381
  • Bergersen FJ, Goodchild DJ (1973) Cellular location and concentration of leghaemoglobin in soybean root nodules. Aust J Biol Sci 26:741–756
  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254
  • Day DA, Copeland L (1991) Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol Biochem 29(2):185–201
  • Del Rio LA, Gomez M, Yanez J, Leal A, Lopez GJ (1978) Iron deficiency in pea plants effect on catalase, peroxidase, chlorophyll and proteins of leaves. Plant Soil 49:343–353
  • Drevon JJ, Kalia VC, Pedelahore P (1988) In situ open-flow assay of acetylene reduction activity by soybean root nodules: influence of acetylene and oxygen. Plant Physiol Biochem 26:73–78
  • Drevon JJ, Deransart C, Ireki H, Payre H, Roy G, Serraj R (1994) La salinité abaisse la conductance des nodosités de légumineuses á la diffusion de l’oxygéne. In: Drevon JJ (Ed) Facteurs limitant la fixation symbiotique de l’azote dans le bassin méditerranéen, INRA Editions, les colloques no 77, pp 73–84
  • Esterbauer H (1993) Estimation of peroxidative damage. In: Vincent JL (ed) Update in intensive care and emergency. Medicine 17:80–91
  • Iturbe-Ormaetxe I, Moran JF, Arrese-Igor C, Gogorcena Y, Klucas RV, Becana M (1995) Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell Environ18:421–429
  • Köseoglu AT, Açikgöz V (1995) Determination of iron chlorosis with extractable iron analysis in peach leaves. J Plant Nutr 18:153–161
  • Krouma A, Abdelly C (2003) Importance of iron use efficiency in common bean (Phaseolus vulgaris L.) for iron chlorosis resistance. J Plant Nutr Soil Sci 4:525–528
  • Krouma A, Gharsalli M, Abdelly C (2003) Differences in response to iron deficiency among some lines of common bean. J Plant Nutr 26:2295–2305
  • Krouma A, Drevon JJ, Abdelly C (2006) Genotypic variation of N2 fixing common bean (Phaseolus vulgaris L.) in response to iron deficiency. J Plant Physiol 163:1094–1100
  • Malkin R (1987) Photosynthesis. In: Barber J (ed) The light reactions, topics in photosynthesis research, vol 8. Elsevier, Amsterdam, pp 495–525
  • Molassiotis A, Tanou G, Diamantidis G, Patakas A, Therios L (2006) Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J Plant Physiol 163:176–185
  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radical Biol Med 22:861–870
  • Moreau S, Meyer JM, Puppo A (1995) Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Letters 361:225–228
  • Parsons R, Raven JA, Sorent JI (1995) Translation of iron in the N2-fixing stem nodules of sesbania rostrata (Brem). J Exp Bot 46:291–296
  • Rai R, Singh SN, Prasad V (1982) Effect of pressmud-amended pyrite on symbiotic N2-fixation, active iron contents of nodules, grain yield and quality of chickpea (Cicer arietinum L.) lines in calcareous soil. J Plant Nutr 5:905–913
  • Rai R, Prasad V, Choudhury SK, Sinha NP (1984) Iron nutrition and symbiotic N2 fixation of lentil (Lens culinaris) lines in calcareous soil. J Plant Nutr 7:399–405
  • Ranieri A, Castagna A, Baldan B, Soldatini GF (2001) Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot 52:25–35
  • Rutherford AW (1985) Orientation of EPR signals arising from components in photosystem II membranes. Biochim Biophys Acta 807:189–201
  • Sandmann G (1985) Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae. Photosynth Res 6:261–272
  • Scebba F, Sebastiani L, Vitagliano C (1999) Protective enzymes against activated oxygen species in wheat (Triticum aestivum L.) seedlings: responses to cold acclimation. J Plant Physiol 155:762–768
  • Sheokand S, Dhandi S, Swaraj K (1995) Studies on nodule functioning and hydrogen peroxide scavenging enzymes under salt stress in chickpea nodules. Plant Physiol Biochem 33:561–566
  • Spence MJ, Henzl MT, Lammers PJ (1991) The structure of a Phaseolus vulgaris cDNA encoding the iron storage protein ferritin. Plant Mol Biol 117:499–504
  • Swaraj K, Bishnoi NR (1999) Effect of salt stress on nodulation and nitrogen fixation in legumes. Indian J Exp Biol 37:843–848
  • Tang C, Robson AD, Dilworth MJ (1990) The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L. New Phytol 114:173–182
  • Terry N, Zayed AM (1995) Physiology and biochemistry of leaves under iron deficiency. In: Abadia J (ed) Iron nutrition in soils and plants. Kluwer, Dordrecht, pp 283–294
  • Thoiron S, Pascal N, Briat JF (1997) Impact of iron deficiency and iron re-supply during the early stages of vegetative development in maize (Zea mais L.). Plant Cell Environ 20:1051–1060
  • Wilson DO, Reisenauer HM (1963) Determination of leghaemoglobin in legume nodules. Anal Biochem 6:27–30
  • Wittemberg JB, Wittemberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore-bound iron in the peribacteroïd space of soybean root nodules. Plant Soil 178:161–169
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.