PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 2 |

Tytuł artykułu

Phenology of emergence by Mediterranean sympatric cave-dwelling bats during their breeding period

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The emergence of cave-dwelling bats can be influenced by multiple variables, such as diurnal predator evasion, energetic requirements, and prey abundance. This work aimed to determine emergence patterns of cave-dwelling bat species from roosts over the April–July 2013 period in the Valencian Community (East Spain) by infrared camera and acoustic recordings. We observed that Miniopterus schreibersii left earliest followed by the Myotis myotis/blythii group and Myotis capaccinii and finally Myotis escalerai. This pattern of emergence was observed in four roosts with no significant differences. Miniopterus schreibersii tended to display quicker flight in open areas, compared to the Myotis genus. Moreover, the M. myotis/blythii group and M. capaccinii were larger in size and had a greater wing loading than M. escalerai. Therefore, variations in emergence times may be due to differences in predation pressure by diurnal and crepuscular predators, which would enable large and fast bats like M. schreibersii to leave earlier, and thus, perhaps take advantage of insect abundance peaks. Another finding was that bats in general left earlier in relation to sunset in summer (particularly in June) than in spring. Differences between months could be attributed to the presence of lactating females in May and June in the genus Myotis, which have higher energetic demands than other reproductive classes and may need to forage for a longer time or travel to further distances. Different results were obtained for M. schreibersii, indicating different ecological pressures for this species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.357-365,fig.,ref.

Twórcy

  • Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedratico Jose Beltran 2, 46980 Paterna (Valencia), Spain
autor
  • Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedratico Jose Beltran 2, 46980 Paterna (Valencia), Spain
  • Centro de Recuperacion de Fauna, de la Comunitat Valenciana, Avinguda dels Pinars 106, 46012 Valencia, Spain
autor
  • Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedratico Jose Beltran 2, 46980 Paterna (Valencia), Spain

Bibliografia

  • 1. Anthony, E. 1988. Age determination in bats. Pp. 47–58, in Ecological and behavioral methods for the study of bats ( T. H. Kunz, ed.). Smithsonian Institution Press, Washington, D.C., 533 pp. Google Scholar
  • 2. Aschoff, J. 1966. Circadian activity pattern with two peaks. Ecology, 47: 657–662. Google Scholar
  • 3. Audet, D. 1990. Foraging behavior and habitat use by a gleaning bat, Myotis myotis (Chiroptera: Vespertilionidae). Journal of Mammalogy, 71: 420–427. Google Scholar
  • 4. Bell, G. P. 1982. Behavioral and ecological aspects of gleaning by a desert insectivorous bat Antrozous pallidus (Chiroptera: Vespertilionidae). Behavioral Ecology and Sociobiology, 10: 217–223. Google Scholar
  • 5. Cowles, R. B. 1947. Vascular changes in the wings of bats. Science, 105: 362–363. Google Scholar
  • 6. Davis, R. B., C. F. Herreid, and H. L. Short. 1962. Mexican free-tailed bats in Texas. Ecological Monographs, 32: 311–346. Google Scholar
  • 7. de Juana, E., and J. M. Varela. 2005. Aves de España. SEO/BirdLife-Lynx Editions, Barcelona, Spain, 165 pp. Google Scholar
  • 8. De Lucas, J. 2007. Miniopterus schreibersii (Kuhl, 1817). Pp. 262–266, in Atlas y Libro Rojo de los Mamíferos Terrestres de España ( L. J. Palomo, J. Gisbert, and J. C. Blanco, eds.). Dirección General para la Biodiversidad-SECEMSECEMU, Madrid, 588 pp. Google Scholar
  • 9. Duvergé, P. L., G. Jones, J. Rydell, and R. D. Ransome. 2000. Functional significance of emergence timing in bats. Ecography, 23: 32–40. Google Scholar
  • 10. Elliott, W., S. Samoray, S. Gardner and J. Kaufmann. 2006. The MDC method: counting bats with infrared video. Pp. 147–153, in Proceeding of the 2005 National Cave and Karst Management Symposium, Albany, NY. Available at http://www.nckms.org/2005/pdf/Papers/Elliott-mdcbats.pdf. Google Scholar
  • 11. Erkert, H. G. 1978. Sunset-related timing of flight activity in Neotropical bats. Oecologia, 37: 59–67. Google Scholar
  • 12. Erkert, H. G. 1982. Ecological aspects of bat activity rhythms. Pp. 201–242, in Ecology of bats ( T. H. Kunz, ed.). Plenum Press, New York, xviii + 425 pp. Google Scholar
  • 13. Fenton, M. B., I. L. Rautenbach, S. E. Smith, C. M. Swanepoel, J. Grosell,. and J. van Jaarsveld. 1994. Raptors and bats: threats and opportunities. Animal Behaviour, 48: 9–18. Google Scholar
  • 14. Garrido-García, J. A., and J. Nogueras. 2007. Myotis myotis (Borkhausen, 1797). Pp. 153–157, in Atlas y Libro Rojo de los Mamíferos Terrestres de España ( L. J. Palomo, J. Gisbert and J. C. Blanco, eds.). Dirección General para la Biodiversidad-SECEM-SECEMU, Madrid, 588 pp. Google Scholar
  • 15. Heideman, R. 1988. The timing of reproduction in the fruit bat Haplonycteris fischeri (Pteropodidae): geographic variation and delayed development. Journal of Zoology (London), 215: 577–595. Google Scholar
  • 16. Henry, M., D. W. Thomas, R. Vaudry, and M. Carrier. 2002. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). Journal of Mammalogy, 83: 767–774. Google Scholar
  • 17. Hughes, P. M., and J. M. Rayner. 1991. Addition of artificial loads to long-eared bats Plecotus auritus: handicapping flight performance. Journal of Experimental Biology, 161: 285–298. Google Scholar
  • 18. Hughes, P. M., and J. M. Rayner. 1993. The flight of pipistrelle bats Pipistrellus pipistrellus during pregnancy and lactation. Journal of Zoology (London), 230: 541–555. Google Scholar
  • 19. Hughes, P. M., J. M. V. Rayner, and G. Jones. 1995. Ontogeny of ‘true’ flight and other aspects of growth in the bat Pipistrellus pipistrellus. Journal of Zoology (London), 236: 291–318. Google Scholar
  • 20. Jones, G., and J. Rydell. 1994. Foraging strategy and predation risk as factors influencing emergence time in echolocating bats. Philosophical Transactions of the Royal Society of Lon don, 346B: 445–455. Google Scholar
  • 21. Kunz, T. H. 1974. Feeding ecology of a temperate insectivorous bat (Myotis velifer). Ecology, 55: 693–711. Google Scholar
  • 22. Kunz, T. H. 1982. Roosting ecology of bats. Pp. 1–55, in Ecology of bats ( T. H. Kunz, ed.). Plenum Publishing Corporation, New York, xiv + 425 pp. Google Scholar
  • 23. Kunz, T. H., and E. L. P. Anthony. 1996. Variation in nightly emergence behavior in the little brown bat, Myotis lucifugus (Chiroptera: Vespertilionidae). Pp. 225–236, in Contri butions in mammalogy. A memorial volume honoring J. Knox Jones, Jr. ( H. H. Genoways and R. J. Baker, eds.). Museum of Texas Tech University, Lubbock, 315 pp. Google Scholar
  • 24. Kunz, T. H., P. V. August, and C. D. Burnett. 1983. Harem social organization in cave roosting Artibeus jamaicensis (Chiroptera: Phyllostomidae). Biotropica, 15: 133–138. Google Scholar
  • 25. Kunz, T. H., C. Wemmer, and V. Hayssen. 1996. Sex, age, and reproductive condition of mammals. Pp. 279–290, in Measuring and monitoring biological diversity. Standard methods for mammals ( D. E. Wilson, F. R. Cole, J. D. Nichols, R. Rudran, and M. S. Foster, eds.). Smithsonian Institution Press, Washington, D.C., 409 pp. Google Scholar
  • 26. Kunz, T. H., M. Betke, N. I. Hristov, and M. J. Vonhof. 2009. Methods for assessing colony size, population size, and relative abundance of bats. Pp. 133–157, in Ecological and behavioral methods for the study of bats, 2nd edition ( T. H. Kunz and S. Parsons, eds.). Johns Hopkins University Press, Baltimore, Maryland, 901 pp. Google Scholar
  • 27. Kurta, A., G. P. Bell, K. A. Nagy, and T. H. Kunz. 1989. Energetics of pregnancy and lactation in freeranging little brown bats (Myotis lucifugus). Physiological Zoology, 62: 804–818. Google Scholar
  • 28. Lang, A. B., E. K. Kalko, H. Römer, C. Bockholdt, and D. K. Dechmann. 2006. Activity levels of bats and katydids in relation to the lunar cycle. Oecologia, 146: 659–666. Google Scholar
  • 29. Lee, Y.-F., and G. F. McCracken. 2001. Timing and variation in the emergence and return of Mexican free-tailed bats, Tadarida brasiliensis mexicana. Zoological Studies, 40: 309–316. Google Scholar
  • 30. Lesiński, G., M. Ignaczak, and J. Manias. 2009. Opportunistic predation on bats by the tawny owl Strix aluco. Animal Biology, 59: 283–288. Google Scholar
  • 31. Mello, M. A., E. K. V. Kalko, and W. R. Silva. 2013. Effects of moonlight on the capturability of frugivorous phyllostomid bats (Chiroptera: Phyllostomidae) at different time scales. Zoología (Curitiba), 30: 397–402. Google Scholar
  • 32. Metcalfe, N. B., and S. E. Ure. 1995. Diurnal variation in flight performance and hence potential predation risk in small birds. Proceedings of the Royal Society of Lon don, 261B: 395–400. Google Scholar
  • 33. Mitchell-Jones, T., A. Z. Bihari, M. Masing, and L. Rodrigues. 2007. Protecting and managing underground sites for bats. EUROBATS Publication Series, 2: 1–38. Google Scholar
  • 34. Monsalve, M. A., D. Almenar, A. Alcocer, and A. J. Castelló. 2007. Myotis capaccinii (Bonaparte, 1837). Pp. 194–198, in Atlas y Libro Rojo de los Mamíferos Terrestres de España ( L. J. Palomo, J. Gisbert, and J. C. Blanco, eds.). Dirección General para la Biodiversidad-SECEMSECEMU, Madrid, 588 pp. Google Scholar
  • 35. Morrison, D. W. 1978. Lunar phobia in a neotropical fruit bat, Artibevs jamaicensis (Chiroptera: Phyllostomidae). Animal Behaviour, 26: 852–855. Google Scholar
  • 36. Neuweiler, G. 2000. Functional anatomy and locomotion. Pp. 9–42, in The biology of bats. Oxford University Press, Oxford, ix + 310 pp. Google Scholar
  • 37. Nogueras, J. and J. A. Garrido. 2007. Myotis blythii (Tomes, 1857). Pp. 158–162, in Atlas y Libro Rojo de los Mamíferos Terrestres de España ( L. J. Palomo, J. Gisbert, and J. C. Blanco, eds.). Dirección General para la Biodiversidad-SECEM-SECEMU, Madrid, 588 pp. Google Scholar
  • 38. Norberg, U. M., and J. M. Rayner. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London, 316B: 335–427. Google Scholar
  • 39. Pavey, C. R., J. E. Grunwald, and G. Neuweiler. 2001. Foraging habitat and echolocation behaviour of Schneider's leafnosed bat, Hipposideros speoris, in a vegetation mosaic in Sri Lanka. Behavioral Ecology and Sociobiology, 50: 209–218. Google Scholar
  • 40. Petrželková, K., and J. Zukal. 2001. Emergence behaviour of the serotine bat (Eptesicus serotinus) under predation risk. Netherlands Journal of Zoology, 51: 395–414. Google Scholar
  • 41. Quetglas, J. 2007. Myotis nattereri (Kuhl, 1817) Myotis escalerai (Cabrera, 1904). In Atlas y Libro Rojo de los Mamíferos Terrestres de España. ( L. J. Palomo, J. Gisbert and J. C. Blanco, eds.). Dirección General para la Biodiversidad-SECEM-SECEMU, 186–190. Google Scholar
  • 42. Racey, P. A. 1988. Reproductive assessment in bats. Pp. 31–45, in Ecological and behavioral methods for the study of bats. ( T. H. Kunz, ed.). Smithsonian Institution Press, Washington, D.C., xxii + 353 pp. Google Scholar
  • 43. Racey, P. A., and J. R. Speakman. 1987. The energy costs of pregnancy and lactation in heterothermic bats. Symposia of the Zoological Society of London, 57: 107–125. Google Scholar
  • 44. Racey, P. A., and S. M. Swift. 1985. Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. Journal of Animal Ecology, 54: 205–215. Google Scholar
  • 45. Reichard, J. D., L. E. Gonzalez, C. M. Casey, L. C. Allen, N. I. Hristov, and T. H. Kunz. 2009. Evening emergence behavior and seasonal dynamics in large colonies of Brazilian free-tailed bats. Journal of Mammalogy, 90: 1478–1486. Google Scholar
  • 46. Rodrigues, L., and J. Palmeirim. 1994. An infrared video system to count and identify emerging bats. Bat Reasearch News, 35: 77–79. Google Scholar
  • 47. Rodrigues, L., and J. M. Palmeirim, 2008. Migratory behaviour of the Schreiber's bat: when, where and why do cave bats migrate in a Mediterranean region? Journal of Zoology (London), 274: 116–125. Google Scholar
  • 48. Russo, D., and G. Jones. 2002. Identification of twenty two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology (London), 258: 91–103. Google Scholar
  • 49. Rydell, J., and J. R. Speakman. 1995. Evolution of nocturnality in bats: potential competitors and predators during their early history. Biological Journal of the Linnean Society, 54: 183–191. Google Scholar
  • 50. Rydell, J., A. Entwistle, and P. A. Racey. 1996. Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos, 76: 243–252. Google Scholar
  • 51. Schoeman, M. C., and D. S. Jacobs. 2008. The relative influence of competition and prey defenses on the phenotypic structure of insectivorous bat ensembles in southern Africa. PLoS ONE, 3: e3715. Google Scholar
  • 52. Sikes, R. S., W. L. Gannon, and The Animal Care and Use Committee of the American Society of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 53. Speakman, J. R. 1991a. The impact of predation by birds on bat populations in the British Isles. Mammal Review, 21: 123–142. Google Scholar
  • 54. Speakman, J. R. 1991b. Why do insectivorous bats in Britain not fly in daylight more frequently? Functional Ecology, 5: 518–524. Google Scholar
  • 55. Speakman, J. R., G. C. Hays, and P. I. Webb. 1994. Is hyperthermia a constraint on the diurnal activity of bats? Journal of Theoretical Biology, 171: 325–341. Google Scholar
  • 56. Spitzenberger, F., S. Engelberger, and K. Kugelschafter, 2014. Real time observations of Strix aluco preying upon a maternity colony of Myotis emarginatus. Vespertilio, 17: 185–196. Google Scholar
  • 57. Thomas, A. J., and D. S. Jacobs, 2013. Factors influencing the emergence times of sympatric insectivorous bat species. Acta Chiropterologica, 15: 121–132. Google Scholar
  • 58. Thomson, T. J., J. A. Scott, and S. B. Castleberry. 2010. Evaluation of methods for monitoring long-term population trends in cave-roosting bats. In Proceedings of the Annual Conference, Southeastern Association of Fish and Wildlife Agencies, 64: 75–80. Google Scholar
  • 59. Tidemann, C., and D. Woodside. 1978. A collapsible bat-trap and a comparison of results obtained with the trap and with mist-nest. Australian Wildlife Research, 5: 355–362. Google Scholar
  • 60. Twente, J. W. 1955. Some aspects of habitat selection and other behavior of cavern-dwelling bats. Ecology, 36: 706–732. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-b7860d10-c10d-47d8-8ba5-2fa678c4ec7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.