PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 09 |

Tytuł artykułu

Novel antimicrobial and antioxidative activity by endophytic Penicillium roqueforti and Trichoderma reesei isolated from Solanum surattense

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Crop protection against phyto-pathogens has become a global challenge that can be tackled efficiently through natural resources, including endophytic fungi. Endophytes serve as a reservoir for the vast array of potent bioactive metabolites. We investigated the antioxidant and antibacterial potency of endophytes from the roots of Solanum surattense. The non-polar fraction of the cultural filtrate from the isolated strains was tried for antibacterial potency through agar plate diffusion assay. Among the isolated strains, Penicillium roqueforti (CGF-1) and Trichoderma reesei (CGF-11) had broad-spectrum antibacterial activity against phyto-pathogenic bacteria (Xanthomonas oryzae, Pseudomonas syringae, Agrobacterium tumefaciens, and Ralstonia solanacearum). The extracts of CGF-1 and CGF-11 achieved the best result against A. tumefaciens. Similarly, qualitative analysis of the ethyl acetate extracts P. roqueforti and T. reesei exposed the occurrence of alkaloids, flavonoids, phenols, steroids, and tannins. HPLC analysis also confirmed the presence ferulic acid, cinnamic acid, quercetin, and rutin in the non-polar fraction of the cultural filtrate from the isolated strains. The results conclude that P. roqueforti and T. reesei can play an active role against the plant pathogens by secreting the bioactive compounds to protect host plant. Furthermore, the antibacterial and antioxidant potential of the P. roqueforti and T. reesei suggests its use in agriculture and pharmaceutical industry.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

09

Opis fizyczny

Article 164 [11p.], fig.,ref.

Twórcy

autor
  • Department of Botany, Hazara University, Mansehra 21120, Pakistan
autor
  • Department of Botany, Hazara University, Mansehra 21120, Pakistan
autor
  • Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
autor
  • Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
autor
  • Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
autor
  • Department of Agriculture, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

Bibliografia

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495
  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16
  • Bhardwaj A, Sharma D, Jadon N, Agrawal P (2015) Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus roxburghii. Arch Clin Microbiol 6:1–9
  • Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655
  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184
  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 1:92
  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715
  • Devi NN, Shankar D, Sutha S (2012) Biomimetic synthesis of silver nanoparticles from an endophytic fungus and their antimicrobial efficacy. Int J Biomed Adv Res 3:409–415
  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5:537–561
  • Hamayun M et al (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686. https://doi.org/10.3389/fmicb.2017.00686
  • Haraguchi H, Kataoka S, Okamoto S, Hanafi M, Shibata K (1999) Antimicrobial triterpenes from Ilex integra and the mechanism of antifungal action. Phytother Res Int J Devot Pharmacol Toxicol Eval Nat Prod Deriv 13:151–156
  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25
  • Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:46
  • Hussain A et al (2018) Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere 211:653–663. https://doi.org/10.1016/j.chemosphere.2018.07.197
  • Ichikawa T, Date M, Ishikura T, Ozaki A (1971) Improvement of kasugamycin-producing strain by the agar piece method and the prototroph method. Folia Microbiol 16:218–224
  • Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun M (2018) IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PloS One 13:e0208150. https://doi.org/10.1371/journal.pone.0208150
  • Iqbal M et al (2014) Antimicrobial, cytotoxic and phytotoxic potency of ethyl acetate extract of Rhizopus stolonifer culture. Trop J Pharmaceut Res 13:87–92
  • Ismail Hamayun M, Hussain A, Iqbal A, Khan SA, Lee I-J (2018) Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. BioMed Res Int. https://doi.org/10.1155/2018/7696831
  • Jaber LR, Ownley BH (2017) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control
  • Jan FG, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee I-J (2019) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19:3. https://doi.org/10.1186/s12866-018-1374-6
  • Johann S, Rosa LH, Rosa CA, Perez P, Cisalpino PS, Zani CL, Cota BB (2012) Antifungal activity of altenusin isolated from the endophytic fungus Alternaria sp. against the pathogenic fungus Paracoccidioides brasiliensis. Revista iberoamericana de micologia 29:205–209
  • Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505
  • Khan AL, Waqas M, Hamayun M, Al-Harrasi A, Al-Rawahi A, Lee I-J (2013a) Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol 13:51
  • Khan GJ, Omer MO, Ashraf M, Rehman HU, Khan ZUD (2013b) Effect of Punica granatum (pomegranate) fruit extract on angiogenesis. J App Pharm 4:764–780
  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I-J (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74
  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874
  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798
  • Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87
  • Laghari AQ, Memon S, Nelofar A, Laghari AH (2011) Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of cassia angustifolia. Am J Anal Chem 2:871
  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587
  • Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2018) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 1:1–11. https://doi.org/10.1007/s13199-018-0583-y
  • Mehmood A et al (2019) Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root. Plant Physiol Biochem 135:61–68. https://doi.org/10.1016/j.plaphy.2018.11.029
  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65
  • Nagamani A, Kunwar IK, Manoharachary C (2006) Handbook of soil fungi. IK international
  • Nieto-Jacobo MF et al (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:102
  • Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microbial Pathog 82:50–59
  • Passari AK et al (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 7:11809
  • Petrini O, Fisher P (1988) A comparative study of fungal endophytes in xylem and whole stem of Pinus sylvestris and Fagus sylvatica. Trans Br Mycol Soc 91:233–238
  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Ann Rev Phytopathol 49:5
  • Porte D (2017) Interactive effect of rhizosphere bacterial consortia on performance of Chickpea. Indira Gandhi Krishi Vishwavidhyalaya, Raipur
  • Portillo A, Vila R, Freixa B, Adzet T, Cañigueral S (2001) Antifungal activity of Paraguayan plants used in traditional medicine. J Ethnopharmacol 76:93–98
  • Qin S et al (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. Chin Appl Environ Microbiol 75:6176–6186
  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361
  • Radji M, Sumiati A, Rachmayani R, Elya B (2011) Isolation of fungal endophytes from Garcinia mangostana and their antibacterial activity. Afr J Biotech 10:103–107
  • Ravensberg WJ (2015) Commercialisation of microbes: present situation and future prospects. Principles of plant-microbe interactions. Springer, Berlin, pp 309–317
  • Santos IPD, Silva LCND, Silva MVD, Araújo JMD, Cavalcanti MDS, Lima VLDM (2015) Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiol 6:350
  • Sashikumar J, Remya M, Janardhanan K (2003) Antimicrobial activity of ethno medicinal plants of Nilgiri biosphere reserve and Western Ghats. Asian J Microbiol Biotechnol Environ Sci 5:183–185
  • Savary S, Ficke A, Aubertot J-N, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Springer, Berlin
  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kang S-M, Kim J-G, Lee I-J (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287
  • Yadav M, Yadav A, Yadav JP (2014) vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam Asian Pac. J Trop Med 7:S256–S261
  • Zhao K et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau. China Curr Microbiol 62:182–190

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b779b247-5833-4a96-b834-b3f92e8e8ec0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.