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KEYWORDS Summary Remote sensing studies published up to now show that the performance of empirical
Band-ratio algorithm; (band-ratio type) algorithms in different parts of the Baltic Sea is highly variable. Best performing
Marine optics; algorithms are different in the different regions of the Baltic Sea. Moreover, there is indication
Baltic Sea that the algorithms have to be seasonal as the optical properties of phytoplankton assemblages

dominating in spring and summer are different. We modelled 15,600 reflectance spectra using
HydroLight radiative transfer model to test 58 previously published empirical algorithms. 7200 of
the spectra were modelled using specific inherent optical properties (SIOPs) of the open parts of
the Baltic Sea in summer and 8400 with SIOPs of spring season. Concentration range of
chlorophyll-a, coloured dissolved organic matter (CDOM) and suspended matter used in the
model simulations were based on the actually measured values available in literature. For each
optically active constituent we added one concentration below actually measured minimum and
one concentration above the actually measured maximum value in order to test the performance
of the algorithms in wider range. 77 in situ reflectance spectra from rocky (Sweden) and sandy

* Corresponding author at: Tartu Observatory, Observatooriumi 1, Toravere 61602, Noo Parish, Tartu County, Estonia. Tel.: +372 51 39 778;
fax: +372 696 2555.
E-mail addresses: ligi@to.ee (M. Ligi), tiit.kutser@sea.ee (T. Kutser), kari.y.kallio@ymparisto.fi (K. Kallio), Anu.Reinart@to.ee (A. Reinart).
' These authors contributed equally to this work.
Peer review under the responsibility of Institute of Oceanology of the Polish Academy of Sciences.

ELsevieR | Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.0ceano.2016.08.002
0078-3234/© 2016 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by Elsevier Sp. z 0.0. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://dx.doi.org/10.1016/j.oceano.2016.08.002
mailto:ligi@to.ee
mailto:tiit.kutser@sea.ee
mailto:kari.y.kallio@ymparisto.fi
mailto:Anu.Reinart@to.ee
http://www.sciencedirect.com
www.journals.elsevier.com/oceanologia/
http://dx.doi.org/10.1016/j.oceano.2016.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

58 M. Ligi et al./Oceanologia 59 (2017) 57—68

(Estonia, Latvia) coastal areas were used to evaluate the performance of the algorithms also in
coastal waters. Seasonal differences in the algorithm performance were confirmed but we found also
algorithms that can be used in both spring and summer conditions. The algorithms that use bands
available on OLCI, launched in February 2016, are highlighted as this sensor will be available for
Baltic Sea monitoring for coming decades.

© 2016 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by Elsevier
Sp. z 0.0. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

1. Introduction

Water reflectance data collected with field radiometers has
mainly been used for satellite data calibration and validation
purposes. However, handheld devices and portable autono-
mous systems on ferries, jetties, and buoys have become
remote sensing tools in their own, as they allow collecting
fast and frequent data about the state of waterbodies (Alikas
et al., 2015; Groetsch et al., 2014; Simis and Olsson, 2013).
Processing the radiometer, as well as satellite data, can be
carried out in different ways. A “classical” approach is
developing empirical relationships between band-ratios (col-
our indices), their combinations or more sophisticated para-
meters and water characteristics, like chlorophyll-a
concentration. The disadvantages of the empirical methods
are that they tend to be local (need tuning for a particular
waterbody) or even seasonal (Metsamaa et al., 2006), and
need to be developed for each sensor used.

An alternative approach is physics-based analytical
methods, where full modelled spectra are used for retriev-
ing chlorophyll-a, suspended matter and CDOM (coloured
dissolved organic matter) are becoming more and more
popular in interpretation of aquatic remote sensing data.
Such methods have also been used for more than two dec-
ades (Arst and Kutser, 1994; Kutser et al., 2001) and
advanced to inversion procedures like Sambuca (Dekker
et al., 2011), Bomber (Giardino et al., 2012) retrieving
inherent optical water properties (IOPs) and shallow water
bottom type simultaneously. There are also neural network
type approaches like the method developed for MERIS
(Doerffer and Schiller, 2007). The disadvantages of analy-
tical methods, that use water leaving reflectance as the
source for water quality parameters calculations, are that
they are computationally expensive and require very high-
quality input data (e.g. perfect atmospheric correction) that
is often difficult to achieve. The requirement of high quality
input data refers to the spectral library and other model
inversion methods. Neural networks can be trained to pro-
duce reasonable results even if the reflectance spectra are
unrealistic.

It has been shown by many authors (Beltran-Abaunza
et al., 2014; Darecki and Stramski, 2004; Kratzer et al.,
2008; Reinart and Kutser, 2006) that ocean colour algorithms
based on the ratio of blue and green bands (like the 0C4vé
developed for retrieving chlorophyll-a) provided by different
space agencies do not perform well in such optically complex
waterbodies like the Baltic Sea. There have been remote
sensing activities in different parts of the Baltic Sea and
variety of empirical algorithms have been proposed (Attila
et al., 2013; Beltran-Abaunza et al., 2014; Darecki et al.,

2003, 2005, 2008; Harma et al., 2001; Koponen et al., 2007;
Kowalczuk et al., 2005a, 2010; Kutser, 2004; Kutser et al.,
2005a, 2006; Wozniak et al., 2008). However, the algorithms
proposed are usually local; applying them in other parts of
the sea requires tuning of the algorithms. Moreover, previous
studies suggested that there may be need for seasonal water
quality algorithms in the Baltic Sea as phytoplankton assem-
blages in spring and summer are different and their optical
properties are very different (Erm et al., 2008; Feistel et al.,
2008; Kowalczuk et al., 2005b; Wasmund and Uhlig, 2003).
This means that, on the one hand, creating the spectral
library necessary for retrieving water properties in the Baltic
Sea has to contain reflectance spectra for different seasons.
On the other hand, it also suggests that it may be difficult to
find band-ratio type algorithms that perform well during the
whole year.

As seen in the MERIS ATBD (Doerffer and Schiller, 1997),
neural networks have several complicated steps in their
calculation. Therefore, the computations may take time,
when large satellite images are processed. Empirical algo-
rithms can be used to define initial values for analytical
processing to speed up the process by narrowing down the
range of variation. For example, the inversion procedures do
not have to use the whole spectral library, but only parts of it
when approximate concentrations of chlorophyll-a, CDOM
and suspended matter have been estimated by band-ratio
type algorithms. Many satellite instruments are configured to
measure water-leaving signal only at a few spectral bands. It
means that analytical methods are not always easily usable in
interpretation of data from such sensors. Simple band-ratio
type remote sensing algorithms are often a good option for
retrieving water quality parameters from multispectral data,
but these algorithms may also be used in the case of sensors
with better spectral resolution as they are computationally
fast and easy to use. Therefore, these computationally sim-
ple algorithms are also widely used in remote sensing
(Ammenberg et al., 2002; Gitelson et al., 2009; Kallio
et al., 2001; Koponen et al., 2007).

Our aim was to test whether there are simple empirical
algorithms, that use only few spectral channels, which allow
estimating chlorophyll-a, CDOM and suspended matter con-
centrations in the Baltic Sea. In an ideal case these algo-
rithms should work all year round, but finding even seasonal
algorithms that perform well would be a step forward. The
tested algorithms were taken from previously published
papers. The reflectance data used in this study was partly
simulated with HydroLight radiative model using both sum-
mer and spring sets of SIOPs. The concentrations of chlor-
ophyll-a, suspended matter and CDOM used in the model
simulations covered the whole known range for the Baltic
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Table 1 Concentrations used in the spring simulations.

Variable Concentrations N
Chl [ug 17" 0.10 1.0 2.0 4.0 6.0 8.0 14.0 20.0 26.0 32.0 42.0 84.0 250.0 14
TSM [mg 17"] 0.0 04 08 1.3 1.8 23 5.7 7.4 8.9 18.0 50.0 12
dcoom(412) [m™'] 0.05 0.2 03 05 0.7 0.9 1.5 3.0 20.0 10
Table 2 Concentrations used in the summer simulations.

Variable Concentrations N
Chl [ug 17" 0.10 0.8 1.7 2.5 3.3 4.2 6.2 8.2 10.2 12.8 26.0 120.0 12
TSM [mg 1="] 0.05 0.2 0.3 0.8 1.3 1.8 3.4 5.0 6.6 8.1 16.0 50.0 12
acoom(412) [m~"] 0.05 0.2 0.3 0.5 0.7 0.9 1.2 1.5 3.0 20.0 10

Sea. In situ measured data was available for rocky coast of
the Baltic Sea (Sweden) and sandy coastal areas (Estonia and
Latvia). This datasets allowed evaluating the performance of
empirical algorithms for the whole Baltic Sea and two dis-
tinctly different seasons. The coastal dataset allowed
extending the results to nearshore waters where the con-
centrations of optically active substances may be beyond
those usually observed in the areas reachable by research
vessels and were represented by modelled spectra.

2. Material and methods

58 different previously published empirical algorithms were
tested. Out of the 58, listed in Table 4, 30 were for chlor-
ophyll-a (CHL), 20 for the total suspended matter (TSM) and
8 for coloured dissolved organic matter (CDOM). As some
publications give the algorithm with the concentration as the
output, but others do not, we have only used the general
form of the approaches for comparison (e.g. band-ratio to
concentration) and calculated the slopes and intercepts from
our database. Many algorithms were not used in this study, as
they were for case 1 waters and for concentrations too low
for the Baltic Sea.

Hydrolight radiative transfer software was used to pro-
duce a spectral library of Baltic Sea waters. HydroLight is a
commercial software product of Sequoia Scientific, Inc. Itis a
well-known radiative transfer numerical model that com-
putes radiance distributions and derived quantities, such as
irradiances and reflectances, for natural water bodies. Using
Hydrolight, spectral radiance distribution can be computed
as a function of depth, direction, and wavelength within the
water. Water-leaving and reflected-sky radiances are com-
puted separately. HydroLight has to be parameterized with
SIOPs of the particular water body under investigation and
the number of the optically active substances used in the
model can be predefined by the user. The illumination con-
ditions (solar zenith angle, cloudiness) and the state of the
sea surface (wind) can be defined by the user. The model uses
concentrations of optically active substances as input. A
detailed description of the HydroLight software can be found
in Mobley and Sundman (2013a, 2013b). Mobley (1994)
describes the theoretical basis for the solution of radiative

transfer modelling equations. A methodology to use the
Hydrolight model for creating spectral libraries in automated
Matlab software simulations was generated in the framework
of the Finnish national project EOMORE and the EU/FP7
project GLaSS (Global Lakes Sentinel Services). It is shortly
described in Attila et al. (2015).

The model simulations were carried out with the SIOPs of
summer and spring situations. Concentrations of optically
active substances (Tables 1 and 2) were also slightly differ-
ent. The concentrations were defined based on the statistical
distribution of the concentrations in the database collected
on R/V Aranda over the Baltic Sea. One concentration below
the minimum measured value and one concentration above
the measured maximum value were added to the concentra-
tion ranges in order to expand the modelling range. The
concentrations were selected in the range that should be
realistic for the Baltic Sea conditions. The modelled reflec-
tance spectra are shown in Fig. 1.

The main reason of the differences between modelled and
measured data is because the modelled spectra are ideal
cases, while real measurements include waves, different
illumination conditions and other disturbances that occur
during real field measurements.

The modelled spectra were simulated using SIOPs of
waters sampled from research vessel. Nearshore waters
are sometimes optically quite different due to river inflows
or resuspension of bottom sediments. In order to expand the
open Baltic Sea spectral library (modelled spectra) we used
also in situ data collected from 77 coastal stations. The data
was collected between May and September in Estonia, Latvia
and Sweden in 2010—2015 (Figs. 2 and 3, Table 3).

For determination of the concentration of chlorophyll-a
(in mg m~3), water samples were filtered through Whatman
GF/F-filters (0.7 wm pore size) and then extracts of the filters

Table 3 Ranges of measured values.

Variable Min Max Mean
Chl [ug "] 0.79 22.38 4.80
TSM [mg =] 1.20 18.00 6.26
dcoom(412) [m™"] 0.28 13.46 2.28
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Figure 1 Reflectance (Rs) spectra used in this study: (A) modelled reflectance with spring SIOPs; (B) modelled reflectance with

summer SIOPs.

Figure 2 Locations of the sampling points in the coastal waters of the Baltic Sea.

were investigated spectrophotometrically in 96% ethanol
according to the ISO standard method (ISO, 1992). Finally,
CHL was calculated using the Lorenzen (Lorenzen, 1967)
method.

The concentration of total suspended matter (TSM), was
measured gravimetrically after filtration of the same amount
of water through pre-weighed and pre-combusted (103—
105°C for 1 h) GF/F filters. The inorganic fraction of sus-
pended matter, SPIM, was measured after combustion at
550°C for 30 min. The organic fraction of suspended matter,
SPOM, was determined by subtraction of SPIM from TSM
(ESS, 1993).

Absorption by coloured dissolved organic matter (acpom)
was measured with a spectrometer (Hitachi U-3010 UV/VIS, at
the range of 350—750 nm) in water filtered through a Millipore
0.2 um filter. Measurements were carried out in a 5-cm cuv-
ette against distilled water and corrected for residual scat-
tering according to Davies-Colley and Vant (1987). acpom(412)
was used for measuring CDOM concentration in the algorithm
analyses. Different algorithms use different wavelengths for
CDOM, but as Kowalczuk et al. (2005a) has shown, the slope of
the CDOM in the Baltic Sea is relatively stable throughout the
year so using a different wavelength as reference should not
change the performance of the algorithm.
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Figure 3 Insitu measured reflectance (R,s) spectra used in this
study.

Above water remote sensing reflectance measurements
were carried out with two TriOS RAMSES sensors, where
RAMSES-ACC-VIS measures sky irradiance and RAMSES-ARC
upwelling radiance. The downwelling irradiance sensor was
looking straight up and the upwelling radiance sensor was
looking straight down. The methodology was described in
more detail in Kutser et al. (2013). RAMSES measures with a
3.3 nm spectral interval at the wavelength range of 350—
900 nm. In order to avoid errors in reflectance spectra that
occur due to the slight wavelength differences between the
two sensors both radiance and irradiance values were inter-
polated to a 2-nm step before calculating the reflectance as a
ratio of upwelling radiance to downwelling irradiance.

To evaluate the performance of the algorithms we used
correlation between known concentrations (in situ results
and model inputs) and algorithm outputs. From the outputs,
concentrations were calculated and the mean normalized
bias, MNB (systematic error), as well as the normalized rms
error (random error), RMS, was calculated, as suggested by
Darecki et al. (2005). These errors were defined as follows:

Xcalculated —Xinput
MNB = mean (M x100%,
Xinput

RMS — stdev (xcalculated_xinput> %100%

Xinput ’
where Xcqicutated 15 the chlorophyll concentration estimated
from the algorithm and X;np.: is the measured (in situ) or
model input concentration.

3. Results and discussion

There are no empirical algorithms or other image processing
methods that have demonstrated good performance in
retrieving chlorophyll-a, CDOM or TSM with high accuracy
in all parts of the Baltic Sea and during the whole ice-free
season. For example the Copernicus Marine Environment
Monitoring Service uses chlorophyll-a algorithm that has
nearly negligible correlation with measured chlorophyll
(r*=0.21) (Garnesson and Krasemann, 2016). The latest
results by Pitarch et al. (2015) got slightly better results
(r* = 0.42) with OC4v6. One of the main reasons is optical

properties of the Baltic Sea. For example, standard satellite
chlorophyll products rely on the ratio of blue and green
spectral bands (Darecki and Stramski, 2004). Baltic Sea
waters are rich in CDOM that absorbs most of the light in
the blue part of the spectrum (Darecki et al., 2003; Kowal-
czuk et al., 2005b). Therefore, the water leaving radiance in
blue is very small. Sun and sky glint also affect the measured
signal mostly in the blue part of the spectrum. Consequently,
using the blue band in empirical algorithms is not favoured in
optically complex waters like the Baltic Sea. Nevertheless,
we tested the suitability of a widely used OC4vé6 algorithm by
means of model simulations. Coefficient of determination
between the chlorophyll-a concentrations used in the model
and estimated based on the simulated reflectance spectra by
means of the OC4vé was poor — R?=0.0054. The results
match with the previous findings (Beltran-Abaunza et al.,
2014; Darecki and Stramski, 2004; Kratzer et al., 2008;
Pitarch et al., 2015; Reinart and Kutser, 2006) that the
blue-green ratio is not suitable for retrieval of chlorophyll-
a in waters where the remote sensing signal in blue part of
spectrum is determined by absorption of CDOM not chloro-
phyll-a. On the other hand results by Pitarch et al. (2015) are
better than our modelling results. This is surprising as we
calculated the OC4vé from perfect modelled reflectance
whereas Pitarch et al. (2015) used satellite data that contains
different sources of noise, atmospheric correction errors,
etc. To certain extent the results by Pitarch et al. (2015) were
improved by including about one third of stations from
Skagerrak and Kattegat where the physical water properties
(salinity) and optical water properties are quite different
from the actual Baltic Sea. However, this does not explain all
the difference. The results for all other band ratios tested by
us are provided in Table 4.

Phytoplankton succession in the Baltic Sea has a strong
seasonal component. A spring bloom, dominated by diatoms,
starts after ice melts. It is followed by a phytoplankton
minimum in June and dominance of cyanobacteria typically
in July—August. The optical properties of cyanobacteria
differ significantly from other phytoplankton (Groetsch
et al., 2014; Kutser et al., 2006; Simis et al., submitted
for publication). Therefore, we produced two different spec-
tral libraries — one with SIOPs of spring algal assemblage and
one with SIOPs of cyanobacterial season. It was surprising
that several band ratio algorithms performed well in estimat-
ing CHL, TSM and CDOM from the reflectance spectra of both
spring and summer spectral libraries as well as when com-
bined with in situ results. It is seen in Figs. 4—7 that the
results for spring and summer seasons are slightly different,
but some band ratio algorithms provided still acceptable
results when spring and summer data was combined. The
differences between spring and summer are not large
(Fig. 4), but grouping exists and when only results from
one season is used, then the statistics are slightly improved.
It is also seen in Fig. 4 that the data from most of the in situ
sampling stations (green circles) fit with the results obtained
from modelled spectral libraries. The grouping of points,
seen in Fig. 4 (and following figures), occurs because for
every chlorophyll concentration used in the model simulation
there were several sets with different TSM and CDOM con-
centrations. This produces the horizontal scattering of points
for the same concentration of chlorophyll-a. Note that the
in situ points were not taken into account in calculating the
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Table 4 List of algorithms used in this study.

Reference General form Code R*IS MNB% RMS% R?model MNB% RMS%
IS IS model model
Chlorophyll
Zimba and Gitelson (2006) (1/R650 — 1/R710) x R740 CHL1 0.259 43 99 0.838 305 4581
Moses et al. (2009a) (1/R665 — 1/R708) x R753 CHL2 0.403 36 93 0.948 -9 1970
Gitelson et al. (2009) (1/R670 — 1/R710) x R750 CHL3 0.414 35 93 0.964 —144 1750
Mayo et al. (1995) (R485 — R660)/R570 CHL4 0.194 47 99 0.001 2497 6908
Hunter et al. (2008) log10(R710/R670) CHL5  0.499 31 91 0.812 —1021 5477
Han and Jordan (2005) log10(R482.5)/log10(R660) CHL6 0.224 45 96 0.003 2475 6380
Schalles et al. (1998) max(R670 — R850) — CHL7  0.469 41 103 0.041 2270 6456
(R670 — R850) line value
at the location of maximum
Brezonik et al. (2005) R482.5/R660
Linear 0.172 47 101 0.014 2231 7146
Exponential CHLS8 0.219 22 82 0.005 560 1869
Power 0.191 21 82 0.020 579 1910
Ostlund et al. (2001) R565/(R482.5 + R565 + R660) CHL9 0.074 55 119 0.020 2333 6887
Wang et al. (2006) R660/R565 CHL10 0.167 49 104 0.002 2540 7061
Dierberg and Carriker (1994) R693.5/R679
Linear 0.556 29 86 0.856 —1125 4198
Power CHLUT 0429 16 75 0725 119 486
Duan et al. (2007), R700/R670 CHL12 0.552 30 88 0.934 —524 2804
Menken et al. (2006)
and Dierberg and Carriker (1994)
Kutser et al. (1999) R702/R674 CHL13  0.551 30 88 0.951 —522 2569
and Kallio et al. (2001)
Koponen et al. (2007) R705/R664 CHL14 0.503 32 94 0.924 —145 2732
and Ammenberg et al. (2002)
Kallio et al. (2003) R705/R673 CHL15 0.549 30 88 0.957 —-399 2337
Kallio et al. (2001) R706.5/R677.5 CHL16 0.526 31 91 0.966 —447 2317
Kallio et al. (2001) R707.5/R664 CHL17 0.501 33 93 0.928 -97 2679
and Moses et al. (2009a)
Kallio et al. (2001) R709.5/R673.5 CHL18 0.545 31 88 0.962 -319 2237
Jiao et al. (2006) R719/R665
Linear 0.465 35 99 0.938 —48 2736
Power CHL19 0337 18 8 0581 226 954
Harma et al. (2001) R730/R710 CHL20 0.005 59 121 0.243 1600 6867
Harma et al. (2001) R735/R720 CHL21 0.004 58 116 0.127 1956 6507
Moses et al. (2009b) R748/R667 CHL22 0.163 50 116 0.938 -79 2843
Yacobi et al. (1995) Rmax (670 — 850)/R670 CHL23 0.397 46 149  0.960 90 869
Schalles et al. (1998) Sum (R670 — R850) — CHL24 0.006 59 119 0.211 1197 7752
(sum R670 — R850)
Linear
Kutser et al. (2016) R710 — (R676 — CHL25 0.480 40 97 0.089 1962 5580
R770 linear at R710)
Kutser et al. (2016) R810 — (R770 — CHL26 0.202 49 111 0.000 2538 7002

R840 linear at R810)
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Reference General form Code R?IS MNB% RMS% R?model MNB% RMS%
IS IS model model
Anon (2015) 10"(@+b x X+cx X2+ CHL27 0.064 55 112 0.005 2504 7004
dx X*3+e x X"4),
X = log 10(R489/R555)
Darecki et al. (2003) R550/R590 CHL28 0.160 48 98 0.057 1857 7146
Darecki et al. (2005) 10" (log(R(550)/R(590))) CHL29 0.160 48 98 0.057 1857 7146
Wozniak (2014) R555/R645 CHL30 0.182 47 104  0.049 1998 7141
Total suspended matter
Dekker et al. (2002) (R545 + R645)/2
Linear 0.793 —235 690
Exponential TSM1 0294 32 80 g7 142 424
Dekker et al. (2002) (R565 + R660)/2
Linear 0.794 252 719
Exponential TSMZ 0291 32 80 ¢ g5 139 418
Kutser et al. (1999) (Rmax — R750)/ TSM3  0.005 45 101 0.000 1899 4437
(R476 — R750)
Kutser et al. (2016) R810 — (R770 — R840)base TSM4  0.207 36 86 0.997 86 214
Wang and Ma (2001) In((R660 + R825)/ TSM5  0.014 44 99 0.179 782 3713
(R482.5 + R565))
Neukermans et al. (2009) R635/(0.162 — R635) TSM6  0.260 33 79 0.900 —63 187
Miller and McKee (2004) R645 TSM7  0.263 33 79 0.913 -139 370
Doxaran et al. (2006) R660/R565
and Wang et al. (2006) Linear 0.007 45 100 0.088 1548 3909
Exponential TSM8 0015 21 83  0.178 433 1330
Kallio et al. (2001) R702 TSM9  0.230 35 83 0.987 —69 172
Kallio et al. (2001) R702 — R751 TSM10 0.235 34 81 0.970 —106 266
Koponen et al. (2007) R705 TSM11  0.228 35 83 0.991 —62 152
and Ammenberg et al. (2002)
Thiemann and Kaufmann (2000) R705/R678 TSM12  0.040 43 98 0.005 1844 4314
Harma et al. (2001) R705 — R754 TSM13  0.233 34 81 0.976 —-100 249
Kallio et al. (2001) R709.5 TSM14  0.225 35 84 0.994 —38 91
Doxaran et al. (2003) R825/R565
and Doxaran et al. (2006) Linear 0.000 46 102 0.118 1360 3192
Exponential TSMI5 0008 22 8  0.196 367 992
Doxaran et al. (2003) and R840/R545
Onderka and Pekarova (2008) Linear 0.000 46 102 0.097 1413 3253
Exponential TSMI6 0003 22 8  0.181 367 972
Doxaran et al. (2002) R850/R550
and Doxaran et al. (2005) Linear 0.001 46 101 0.098 1407 3238
Exponential TsSm17 0.001 22 85 0.181 367 971
Polynomial 0.001 42 97 0.181 522 4231
Doxaran et al. (2003) R855/R55
Linear 0.101 1398 3225
Exponential TSM18 0.001 45 101 5433 367 o973
Kutser et al. (2016) R710 — (R676 — TSM19  0.000 46 102  0.594 932 2207
R770 linear at R710)
Wozniak (2014) R555/R645 TSM20 0.023 44 98 0.163 678 4659
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Reference General form Code  R*IS MNB% RMS% R®?model MNB% RMS%
IS IS model model
Coloured dissolved organic matter
Brezonik et al. (2005) R482.5 — 0.657 CDOM1 0.334 20 99 0.040 720 2019
(R482.5/R825)
Koponen et al. (2007) R663/R490 CDOM2 0.807 21 68 0.827 91 975
Doxaran et al. (2005) R400/R600
Linear 0.337 19 58 0.061 514 2145
Exponential cbom3 0.654 10 50 0.417 127 362
Power 0.606 10 57 0.631 67 264
Kallio et al. (2008) R560/R660
Linear 0.357 27 67 0.325 144 2615
Exponential cpom4 0.571 14 64 0.636 136 521
Power 0.464 13 64 0.557 118 535
Kutser et al. (2005a) R565/R660
Linear 0.345 28 70 0.343 133 2603
Exponential cboms 0.558 15 65 0.636 168 542
Power 0.448 13 65 0.549 122 560
Ammenberg et al. (2002) R664/R550 CDOM6 0.791 19 60 0.831 94 1239
Menken et al. (2006) R670/R571 CDOM7 0.735 22 66 0.796 139 1342
Kowalczuk et al. (2005) 107(—0.29 — 0.708 x CDOM8 0.242 24 73 0.000 917 1621

x+1.12 x x"2),
X = log 10(R490/R550)

statistics shown in the figure. It is also worth mentioning, that
several algorithms were showing very similar results when in
situ statistics and correlation with modelled data was taken
into account, but RMS and MNB values for model data differed
significantly. For example the MNB of CHL2 was several times
lower than the rest of the algorithms. Also when power
function is used, then CHL11 algorithm's MNB and RMS values
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Figure 4 Correlation between the chlorophyll algorithm No.
2 — (1/R665 — 1/R708) x R753 (Moses et al., 2009a) and chloro-
phyll concentrations [pug |~'] measured in situ (for green circles)
or used in the model simulations (red — summer and blue — spring
circles). Determination coefficients for summer and spring data
separately are r?=0.96 and 0.94 respectively. Correlation for
the field data separately was lower (r* = 0.40).

are relatively low, but correlation is not that good, compared
to others.

The results for suspended matter are similar to that of
chlorophyll-a. The band ratios calculated from in situ reflec-
tance spectra are not correlating well with the TSM concen-
trations. However, if the in situ results are plotted together
with the results obtained from modelled reflectance spectra
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Figure 5 Correlation between TSM algorithm No. 4 — R812 —
(R770 — R840)base (Kutser et al., 2016) and the TSM values
[mg 1~ used in model simulations (red — summer and blue —
spring circles) or measured in situ (green circles). Note that the
determination coefficient in the figure is for modelling results
and does not include in situ data. For in situ data r* = 0.210.
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Figure 6 Correlation between CDOM algorithm No. 5 — R565/
R660 (Kutser et al., 2005) and the CDOM values [m~'] used in
model simulations (red — summer and blue — spring circles) or
measured in situ (green circles). Note that the determination
coefficient in the figure is for modelling results and does not
include in situ data.
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Figure 7 Correlation between CDOM algorithm No. 2 — R663/
R490 (Koponen et al., 2007) and the CDOM values [m~'] used in
model simulations (red — summer and blue — spring circles) or
measured in situ (green circles). Note that the determination
coefficient in the figure is for modelling results and does not
include in situ data.

then they fit with the general trend. For example, the
correlation between the 810 nm peak height (Kutser et al.,
2016) and the TSM concentration was very high (r? close to 1)
if we used only modelled spectra, but very low for in situ data
(r? = 0.29). On the other hand, in situ values follow the trend
from the model data (Fig. 5). The higher variation in in situ
data may be caused by the fact that mineral to organic ratio
in suspended matter is highly variable in near coastal waters.
The amount of mineral particles may be high due to resus-
pension in shallow water areas or river inflow but the amount
of mineral particles should be minimal in open parts of
the Baltic Sea due to sedimentation. On the other hand
the modelled spectral library was created using SIOPs of
open Baltic Sea waters where the TSM was predominantly

phytoplankton. Interesting phenomenon is with algorithms
TSMé6 and TSM16. Both show good results, but tend to over-
estimate the tsm concentrations for in situ data, compared
to underestimation for the model data.

For CDOM we found results that are just the opposite
compared to the CHL and TSM example — some algorithms
gave better results with in situ data than against simulated
data. For example, the green circles (in situ data) in Fig. 6
follow the power law function between green/red band
ratio and CDOM better than the band-ratio calculated from
modelled spectra (red and blue circles). One explanation
that comes out from Fig. 6 is that CDOM retrieval with this
algorithm is problematic if CDOM values are low, but
chlorophyll and TSM values vary in great extent. Lower
CDOM values usually occur in the middle of the Baltic Sea
where TSM is also low and chlorophyll values are high only
during bloom situations. This means that this band-ratio
algorithm may actually work better than predicted by Fig. 6
modelling part as situations where CDOM is low, but TSM
and chlorophyll are high, are not very probable in the Baltic
Sea. Such situation may occur either in bloom conditions or
in river estuaries bringing low CDOM turbid waters to the
Baltic Sea. If all the statistics are taken into account, then
the CDOM2 (Koponen et al., 2007, Fig. 7) tends to show the
best results.

Most of the successful CHL algorithms used the peak near
700—710 nm. Many algorithms use the ratio of this peak to
minima in reflectance caused by chlorophyll-a absorption
(using bands near 675 nm). Such band combinations are
available on both Sentinel 3 OLCI and Sentinel 2 MSI sensors.
OLCI data has 300 m spatial resolution that is too coarse in
many geomorphologically sophisticated coastal areas of the
Baltic Sea. Sentinel 2 will provide similar band configuration
(665 nm and 705 nm) with 20 m spatial resolution. We have
demonstrated (Toming et al., 2016) that the height of the
705 nm peak in MSI data is very useful for mapping lake
chlorophyll, but Sentinel 2 should perform as well in coastal
regions with sophisticated geomorphology. It has been
demonstrated (Kutser, 2004) that 30 m spatial resolution is
not sufficient in the case of cyanobacterial blooms and the
chlorophyll concentration may vary by more than two orders
of magnitude within one 300 m pixel. Optical water proper-
ties may vary as dramatically in river estuaries. Therefore,
the launch of Sentinel 2 opened a great new potential in
coastal and inland water studies. Sentinel 2 imagery will be
available nearly every second day when both S2a and S2b are
on orbit, meaning that the high resolution monitoring of
coastal waters becomes feasible from technical point of view
and there are suitable algorithms for retrieving water quality
parameters.

The most successful TSM algorithm used the height of
810 nm peak as a descriptor of suspended matter concentra-
tion whereas other good algorithms used the height of the
peak at 700—710 nm. Both Sentinel 2 and Sentinel 3 have
spectral bands in the 700—710 nm peak region as was men-
tioned above. We have demonstrated (Kutser et al., 2016)
that the Sentinel 2 MSI band 7 (783 nm) can be used to detect
the peak at 810 nm although the spectral band is not located
optimally to capture this feature. Sentinel 3 OLCI has band
16 at 778.75 nm. It should potentially be used in the same
way like the MSI 783 nm band, but this has to be tested with
real data.



66 M. Ligi et al./Oceanologia 59 (2017) 57—68

One of the useful CDOM retrieval algorithms is based on
the blue to red band ratio whereas others are based on the
red to green band ratio. In general, use of the blue band in
retrieving CDOM is hampered by low water leaving radiance
in CDOM-rich waters. Another issue is atmospheric correc-
tion that has the largest errors in the blue part of spectrum.
It has been demonstrated in the case of lakes (Kutser et al.,
2005b) that green to red band ratios perform the best in
retrieving CDOM content of the water. We have also demon-
strated with Sentinel 2 imagery that the band ratio works
well in retrieving CDOM concentrations in lakes (Toming
et al., 2016). Therefore, one may assume that the band
ratio works well also in the CDOM-rich coastal waters of the
Baltic Sea.

Most of the spectral bands used in the successful band-
ratio algorithms match with the Sentinel 3 OLCI band con-
figuration or are very close to it. This suggests that the
empirical algorithms can be used in retrieving concentra-
tions of CHL, TSM and CDOM in the Baltic Sea provided
atmospheric correction of the imagery produces reliable
reflectance spectra. According to our results, the best
OLCI channel ratios to use for chlorophyll retrieval are
band11/band9 (CHL14 — chla = 89.97 x R705/R664 — 66.10)
and band11/band10 (CHL16 — chla=282.10 x R706.5/
R677.5 — 63.38); as the OLCI sensor bands are wider, these
bands also include wavelengths used in this study. As the OLCI
sensor does not have a band near 810 nm, band11-band12
(TSM13  tsm = 5670.34 x (R705 — R754) — 0.53 and TSM14
tsm =4141.74 x R709.5 — 0.23) might be something that is
worth testing. OLCI bands match very well with our best CDOM
results (CDOM6é6 — band8/bandé — cdom412 = 10.80 x R664/
R550 — 2.82) and CDOM2 (band8/band4 — cdom412 = 3.75 x
R663/R490 — 1.56).

4. Conclusions

The results confirm the assumption that seasonal remote
sensing algorithms provide the best results in the Baltic
Sea. However, the results of the study also show that there
are band ratio algorithms that can be used all year round to
get reliable estimates of chlorophyll-a, CDOM and TSM.
Several of the best performing algorithms use spectral
bands available on both Sentinel 2 and Sentinel 3 meaning
that these satellites can be used in retrieving concentrations
of optically active substances in the Baltic Sea by means of
band ratio algorithms. We would recommend using CHL14
(Ammenberg et al., 2002; Koponen et al., 2007) and CHL16
(Kallio et al., 2001) for chlorophyll-a retrieval, TSM13 (Harma
et al., 2001) and TSM14 (Kallio et al., 2001) for total sus-
pended matter, and CDOM2 (Koponen et al., 2007) and
CDOM6 (Ammenberg et al., 2002) for cdom absorption.
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