PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 1 |

Tytuł artykułu

Modelling of nectarine drying under near infrared - vacuum conditions

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Material and methods. Modelling of nectarine slices drying was carried out in a thin layer near infrared- vacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50,60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. Results. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014—0.047 gwate/gd material-min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46* 10'10 to 6.48 -10'10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Conclusion. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

1

Opis fizyczny

p.15-27,fig.,ref.

Twórcy

autor
  • Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

Bibliografia

  • Aghbashlo, M., Kianmehr, M. H., Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin layer drying of beriberi fruit (Berberidaceae). Ener. Convers. Manag., 49(10), 2865-2871.
  • Akpinar, E., (2006). Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng., 73(1), 75-84.
  • Akpinar, E., Midilli, A., Bicer, Y. (2003). Single layer drying behaviour of potato slices in a convective cyclone and mathematical modelling. Ener. Convers. Manag., 44(7), 1689-1705.
  • AOAC. (2002). Official methods of analysis. Method number 934.06. Association of Official Analytical Chemists Arlington, USA.
  • Arevalo-Pinedo, A., Murr, E. X. F. (2006). Kinetics of vacuum drying of pumpkin (Cucurbita maxima)-. Modelling with shrinkage. J. Food Eng., 76(4), 562-567.
  • Arevalo-Pinedo, A., Murr, F. E. X. (2007). Influence of pretreatments on the drying kinetics during vacuum drying of carrot and pumpkin. J. Food Eng., 80(1), 152-156.
  • Arslan, D., Ozcan, M. (2011). Evaluation of drying methods with respect to drying kinetics, mineral content, and colour characteristics of savory leaves. Food Bioproc. Technol., 5(3), 983-991.
  • Arumuganathan, T., Manikantan, M. R., Rai, R. D., Ananda- kumar, S., Khare, V. (2009). Mathematical modelling of drying kinetics of milky mushroom in a fluidized bed dryer. Int. Agrophys., 23(1), 1-7.
  • Avila, I. M. L. B., Silva, C. L. M. (1999). Modelling kinetics of thermal degradation of colour of peach puree. J. Food Eng., 39(2), 161-166.
  • Balch, P. A. (2003). Prescription for dietary wellness. Penguin Group: New York, USA.
  • Barreiro, J. A., Milano, M., Sandoval, A. J. (1997). Kinetics of colour change of double concentrated tomato paste during thermal treatment. J. Food Eng., 33(3-4), 359-371.
  • Celma, A., Cuadros, F., Rodriguez, L. (2008). Characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process., 87(4), 282-291.
  • Chua, K. J., Mujumdar, A. S., Chou, S. K., Hawlader, M. N. A., Ho, J. C. (2007). Convective drying of banana, guava and potato pieces: effect of cyclical variations of air temperature on drying kinetics and colour change. J. Drying Technol., 18(4-5), 907-936.
  • Crank, J. (1975). The mathematics of diffusion. Clarendon Press: Oxford, UK.
  • Cui, Z. W., Xu, S. Y., Sun, D. W. (2004). Microwave-vacuum drying kinetics of carrot slices. J. Food Eng., 65(2), 157-164.
  • Dadalr, G., Apar, D. K., Ozbek, B. (2007a). Colour change kinetics of okra undergoing microwave drying. Drying Technol., 25(5), 925-936.
  • Dadalr, G., Demirhan, E., Ozbek, B. (2007b). Colour change kinetics of spinach undergoing microwave drying. Drying Technol., 25(10), 1713-1723.
  • Demir, V., Gunhan, T., Yagcioglu, A. K., Degirmencioglu, A. (2004). Mathematical modelling and determination of some quality parameters of air-dried bay leaves. Bio- syst. Eng., 88(3), 325-335.
  • Demir, V., Gunhan, T., Yagcioglu, A. K. (2007). Mathematical modelling of convection drying of green table olives. Biosys. Eng., 98, 47-53.
  • Dissa, A. O., Desmorieux, H., Savadogo, P. W., Segda, B. G., Koulidiati, J. (2010). Shrinkage porosity and density behaviour during convective drying of spirulina. J. Food Eng., 97(3), 410—418.
  • Doymaz, I. (2004). Effect of pre-treatments using potassium metabisulphite and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst. Eng., 89(3), 281-287.
  • Doymaz, I. (2005). Drying behaviour of green beans. J. Food Eng., 69(2), 161-165.
  • Erenturk, S., Gulaboglu, M. S., Gultekin, S. (2004). The thin layer drying characteristics of rosehip. Biosyst. Eng., 89(2), 159-166.
  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum- microwave methods. J. Food Eng., 98(4), 461-470.
  • Ginzburg, A. S. (1969). Application of infrared radiation in food processing. Chem. Proc. Eng. Ser. Leonard Hill: London.
  • Giri, S. K., Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng., 78(2), 512-521.
  • Harold, I. Z. (2008). Electromagnetic radiation and toxic exposure. Human Toxic. Chem. Mix., 16, 245-258.
  • Hu, Q. G., Min, Z., Mujumdar, A. S., Xiao, G. N., Sun, J. C. (2006). Drying of edamames by hot air and vacuum microwave combination. J. Food Eng., 77(4), 977-982.
  • Ibarz, A., Pagan, J., Garza, S. (1999). Kinetic models for colour changes in pear puree during heating at relatively high temperatures. J. Food Eng., 39(4), 415-422.
  • Jain, D., Pathare, P. B. (2004). Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosyst. Eng., 89(3), 289-296.
  • Jaya, S., Das, H. (2003). A vacuum drying model for mango pulp. Drying Technol., 21(7), 1215-1234.
  • Jena, S., Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. J. Food Eng., 79(1), 92-99.
  • Krokida, M. K., Maroulis, Z. B., Saravacos, G. D. (2001). The effect of the method of drying on the colour of dehydrated products. Int. J. Food Sci. Technol., 36(1), 53-59.
  • Lee, G., Hsieh, F. (2008). Thin-layer drying kinetics of strawberry fruit leather. Trans. ASABE, 51, 1699-705.
  • Maclasaac, D., Kanner, G., Anderson, G. (1999). Basic physics of the incandescent lamp (Lightbult). The Physics Teacher, 37.
  • Maskan, M. (2000). Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng., 48(2), 169-175.
  • Aghbashlo, M., Kianmehr, M. H., Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin layer drying of beriberi fruit (Berberidaceae). Ener. Convers. Manag., 49(10), 2865-2871.
  • Akpinar, E., (2006). Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng., 73(1), 75-84.
  • Akpinar, E., Midilli, A., Bicer, Y. (2003). Single layer drying behaviour of potato slices in a convective cyclone and mathematical modelling. Ener. Convers. Manag., 44(7), 1689-1705.
  • AOAC. (2002). Official methods of analysis. Method number 934.06. Association of Official Analytical Chemists Arlington, USA.
  • Arevalo-Pinedo, A., Murr, E. X. F. (2006). Kinetics of vacuum drying of pumpkin (Cucurbita maxima)-. Modelling with shrinkage. J. Food Eng., 76(4), 562-567.
  • Arevalo-Pinedo, A., Murr, F. E. X. (2007). Influence of pretreatments on the drying kinetics during vacuum drying of carrot and pumpkin. J. Food Eng., 80(1), 152-156.
  • Arslan, D., Ozcan, M. (2011). Evaluation of drying methods with respect to drying kinetics, mineral content, and colour characteristics of savory leaves. Food Bioproc. Technol., 5(3), 983-991.
  • Arumuganathan, T., Manikantan, M. R., Rai, R. D., Ananda- kumar, S., Khare, V. (2009). Mathematical modelling of drying kinetics of milky mushroom in a fluidized bed dryer. Int. Agrophys., 23(1), 1-7.
  • Avila, I. M. L. B., Silva, C. L. M. (1999). Modelling kinetics of thermal degradation of colour of peach puree. J. Food Eng., 39(2), 161-166.
  • Balch, P. A. (2003). Prescription for dietary wellness. Penguin Group: New York, USA.
  • Barreiro, J. A., Milano, M., Sandoval, A. J. (1997). Kinetics of colour change of double concentrated tomato paste during thermal treatment. J. Food Eng., 33(3-4), 359-371.
  • Celma, A., Cuadros, F., Rodriguez, L. (2008). Characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process., 87(4), 282-291.
  • Chua, K. J., Mujumdar, A. S., Chou, S. K., Hawlader, M. N. A., Ho, J. C. (2007). Convective drying of banana, guava and potato pieces: effect of cyclical variations of air temperature on drying kinetics and colour change. J. Drying Technol., 18(4-5), 907-936.
  • Crank, J. (1975). The mathematics of diffusion. Clarendon Press: Oxford, UK.
  • Cui, Z. W., Xu, S. Y., Sun, D. W. (2004). Microwave-vacuum drying kinetics of carrot slices. J. Food Eng., 65(2), 157-164.
  • Dadalr, G., Apar, D. K., Ozbek, B. (2007a). Colour change kinetics of okra undergoing microwave drying. Drying Technol., 25(5), 925-936.
  • Dadalr, G., Demirhan, E., Ozbek, B. (2007b). Colour change kinetics of spinach undergoing microwave drying. Drying Technol., 25(10), 1713-1723.
  • Demir, V., Gunhan, T., Yagcioglu, A. K., Degirmencioglu, A. (2004). Mathematical modelling and determination of some quality parameters of air-dried bay leaves. Bio- syst. Eng., 88(3), 325-335.
  • Demir, V., Gunhan, T., Yagcioglu, A. K. (2007). Mathematical modelling of convection drying of green table olives. Biosys. Eng., 98, 47-53.
  • Dissa, A. O., Desmorieux, H., Savadogo, P. W., Segda, B. G., Koulidiati, J. (2010). Shrinkage porosity and density behaviour during convective drying of spirulina. J. Food Eng., 97(3), 410—418.
  • Doymaz, I. (2004). Effect of pre-treatments using potassium metabisulphite and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst. Eng., 89(3), 281-287.
  • Doymaz, I. (2005). Drying behaviour of green beans. J. Food Eng., 69(2), 161-165.
  • Erenturk, S., Gulaboglu, M. S., Gultekin, S. (2004). The thin layer drying characteristics of rosehip. Biosyst. Eng., 89(2), 159-166.
  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum- microwave methods. J. Food Eng., 98(4), 461-470.
  • Ginzburg, A. S. (1969). Application of infrared radiation in food processing. Chem. Proc. Eng. Ser. Leonard Hill: London.
  • Giri, S. K., Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng., 78(2), 512-521.
  • Harold, I. Z. (2008). Electromagnetic radiation and toxic exposure. Human Toxic. Chem. Mix., 16, 245-258.
  • Hu, Q. G., Min, Z., Mujumdar, A. S., Xiao, G. N., Sun, J. C. (2006). Drying of edamames by hot air and vacuum microwave combination. J. Food Eng., 77(4), 977-982.
  • Ibarz, A., Pagan, J., Garza, S. (1999). Kinetic models for colour changes in pear puree during heating at relatively high temperatures. J. Food Eng., 39(4), 415-422.
  • Jain, D., Pathare, P. B. (2004). Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosyst. Eng., 89(3), 289-296.
  • Jaya, S., Das, H. (2003). A vacuum drying model for mango pulp. Drying Technol., 21(7), 1215-1234.
  • Jena, S., Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. J. Food Eng., 79(1), 92-99.
  • Krokida, M. K., Maroulis, Z. B., Saravacos, G. D. (2001). The effect of the method of drying on the colour of dehydrated products. Int. J. Food Sci. Technol., 36(1), 53-59.
  • Lee, G., Hsieh, F. (2008). Thin-layer drying kinetics of strawberry fruit leather. Trans. ASABE, 51, 1699-705.
  • Maclasaac, D., Kanner, G., Anderson, G. (1999). Basic physics of the incandescent lamp (Lightbult). The Physics Teacher, 37.
  • Maskan, M. (2000). Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng., 48(2), 169-175.
  • Mayor, L., Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. J. Food Eng., 61(3), 373-386.
  • Meeso, N., Nathakaranakule, A., Midhiyonon, T., Sopon- ronnarit, S. (2004). Influence of FIR irradiation on paddy moisture reduction and milling quality after fluidized bed drying. J. Food Eng., 65(2), 293-301.
  • Meeso,N., Nathakaranakule, A., Midhiyonon, T., Soponron- narit, S. (2007). Modelling of far-infrared irradiation in paddy drying process. J. Food Eng., 78(4), 1248-1258.
  • Methakhup, S., Chiewchan, N., Devahastin, S. (2005). Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. Food Sci. Technol., 38(6), 579-587.
  • Meziane, S. (2011). Drying kinetics of olive pomace in a fluidized bed dryer. J. Energy Conver. Manag., 52(3), 1644-1649.
  • Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Drying Technol., 20(7), 1503-1513.
  • Mitra, J., Shrivastava, S. L., Srinivasarao, R (2011). Vacuum dehydration kinetics of onion slices. Food Bioprod. Process., 89(1), 1-9.
  • Motevali, A., Minaei, S., Khoshtaghaza, M. H., Amimejat, H. (2011). Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy, 36(11), 6433-6441.
  • Nindo, C. I., Kudo, Y., Bekki, E. (1995). Test model for studying sun drying of rough rice using far-infrared radiation. Drying Technol., 13 (1- 2), 225-238.
  • Nonhebel, G. (1973). Drying of solids in the chemical industry. England: Butterworth.
  • Ozbek, B., Dadali, G. (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing micro- wave treatment. J. Food Eng., 83(4), 541-549.
  • Pere, C., Rodier, E. (2002). Microwave vacuum drying of porous media: experimental study and qualitative considerations of internal transfers. Chem. Eng. Process., 41(5), 427-436.
  • Ratti, C., Mujumdar, A. S. (1995). Infrared drying. In A. S. Mujumdar (Ed.), Handbook of industrial drying. Vol. 1 (pp. 567-588). New York: Marcel Dekker.
  • Reich, G. (2005). Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv. Drug. Del. Rev, 57(8), 1109-1143.
  • Ruiz Diaz, G, Mart'inez-Monzo', P, Chiralt, A. (2003). Modelling of dehydration-rehydration of orange slices in combined microwaveyair drying. Innov. Food Sci. Emerg. Technol, 4(2), 203-209.
  • Sakai, N, Hanzawa, T. (1994). Applications and advances in far infrared heating in Japan. Trends Food Sci. Technol, 5(11), 357-362.
  • Sandu, C. (1986). Infrared radiative drying in food engineering: a process analysis. Biotechnol. Progress, 2(3), 109-119.
  • Stanley, D. W, Baker, K. W. (2002). A simple laboratory exercise in food structure/texture relationships using a flatbed scanner. J. Food Sci. Educ, 1, 6—9.
  • Strumillo, C, Kudra, T. (1987). Drying: Principles, applications and design. USA: Gordon and Breach Sci. Publ.
  • Swasdisevi, T, Devahastin, S, Sa-Adchom, P, Soponron- narit, S. (2009). Mathematical modelling of combined far-infrared and vacuum drying banana slice. J. Food Eng, 92(1), 100-106.
  • Tarrant, A. W. S. (2010). Optical Measurements. In W. Boy- es (Ed.), Instrumentation reference book (pp. 499-519). Burlington, USA: Elsevier.
  • Tutuncu, M. A, Labuza, T. P. (1996). Effect of geometry on the effective moisture transfer diffusion coefficient. J. Food Eng, 30 (3^1), 433^147.
  • Wang, C. Y, Singh, R. P. (1978). A single layer drying equation for rough rice. St. Joseph, MI, USA: ASAE.
  • Wang, Z, Sun, J, Liao, X, Chen, F, Zhao, G, Wu, J, Hu, X. (2007). Mathematical modelling on hot air drying of thin layer apple pomace. J. Food Eng, 40(1), 39-46.
  • Xiao, H. W„ Pang, C. L, Wang, L. H, Bai, J. W, Yang, W. X, Gao, Z. J. (2010). Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosyst. Eng, 105(2), 233-240.
  • Yam, K. L, Papadakis, S. E. (2004). A simple digital imaging method for measuring and analyzing colour of food surfaces. J. Food Eng, 61(1), 137-142.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b6c2c149-e3a0-456b-af43-143a7934b6b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.