PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 12 |

Tytuł artykułu

Iridoid and phenylethanoid glycoside production in multiple shoots and regenerated Rehmannia elata N.E. Brown ex Prain plants following micropropagation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An efficient in vitro plant propagation procedure was established from the shoot tips of Rehmannia elata. Shoot proliferation was performed on Murashige and Skoog (MS) agar medium containing 0.57 μM of indole-3- acetic acid (IAA) and different concentrations (2–8 μM) of 6-benzylaminopurine (BAP), kinetin, or 2-isopentenyladenine (2iP). The highest multiplication rate (nine shoots and buds per explant after 4 weeks) was achieved on MS medium with IAA and 2iP (6 μM). All shoots developed an average of 7.92 roots of 29.6 mm length after 4 weeks of culture on MS medium with half the macro- and micronutrient content (1/2 MS) with 0.57 μM of indole-3-butyric acid. The plantlets were successfully transferred into a greenhouse and then the plants were grown in a field. The iridoid and phenylethanoid contents in multiple shoots as well as shoots and roots of 4-month-old field-grown plants of R. elata derived in vitro (from shoot tips) or from seeds were determined using UHPLC. Quantitative differences in production of secondary metabolites were found depending on the type of analyzed plant material. Harpagide, verbascoside, and isoverbascoside were identified in shoot culture, whereas additionally catalpol was detected in the shoots and roots of intact plants. The highest yield of harpagide was revealed in multiple shoots in the presence of 2iP (4 μM). Higher levels of catalpol, verbascoside, and isoverbascoside were found in in vitro derived plants than in seed-raised plants. The obtained shoot cultures as well as regenerated R. elata plants may be an efficient source of biologically active iridoid (catalpol, harpagide) and phenylethanoid (verbascoside, isoverbascoside) glycosides.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

12

Opis fizyczny

Article: 255 [8 p.], fig.,ref.

Twórcy

autor
  • Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
autor
  • Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
autor
  • Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
  • Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland

Bibliografia

  • Amoo SO, Aremu AO, Van Staden J (2012) In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tiss Org Cult 111:345–358. doi:10.1007/s11240-012-0200-3
  • Amoo SO, Aremu AO, Van Staden J (2013) Shoot proliferation and rooting treatments influence secondary metabolite production and antioxidant activity of tissue culture-derived Aloe arborescens grown ex vitro. Plant Growth Reg 70:115–122. doi:10.1007/s10725-013-9783-x
  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121
  • Anh NTH, Sung TV, Fronke K, Wessjohann LA (2003) Phytochemical studies of Rehmannia glutinosa rhizomes. Pharmazie 58:593–595
  • Ariff S, Lavaud C, Benkhaled M (2008) Iridoids from Verbascum dentifolium. Biochem Syst Ecol 36:669–673. doi:10.1016/j.bse.2008.05.004
  • Backes CL, Hoch WA (2010) In vitro propagation of wavy-leaved Indian paintbrush (Castilleja applegatei Fern.). Sci Hortic 125:475–479. doi:10.1016/j.scientia.2010.08.005
  • Budzianowska A, Skrzypczak L, Budzianowski (2004) Phenylethanoid glucosides from in vitro propagated plants and callus cultures of Plantago lanceolata. Planta Med 70:834–840. doi:10.1055/s-2004-827232
  • Chung IM, Kim JJ, Lim JD, Yu ChY, Kim SH, Hahn SJ (2006) Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ Exp Bot 56:44–53. doi:10.1016/j.envexpbot.2005.01.001
  • Gálvez M, Martín-Cordero C, Ayuso MJ (2005) Iridoids as DNA topoisomerase I poisons. J Enz Inhib Med Chem 20:389–392
  • Georgiev MI, Ivanovska N, Alipieva K, Dimitrova P, Verpoorte R (2013) Harpagoside: from Kalahari Desert to pharmacy shelf. Phytochemistry 92:8–15. doi:10.1016/j.phytochem.2013.04.009
  • Giri A, Narasu ML (2000) Transgenic hairy roots; recent trends and applications. Biotechnol Adv 18:1–22
  • Grąbkowska R, Mielicki W, Wielanek M, Wysokińska H (2014) Changes in phenylethanoid and iridoid glycoside distribution in various tissues of shoot cultures and regenerated plants of Harpagophytum procumbens (Burch.) DC. Ex Meisn. S Afr J Bot 95:159–164. doi:10.1016/j.sajb.2014.09.002
  • Hung JY, Yang CJ, Tsai YM, Huang HW, Huang MS (2008) Antiproliferative activity of aucubin is through cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Clin Exp Pharmacol Physiol 35:995–1001. doi:10.1111/j.1440-1681.2008.04935.x
  • Jensen SR, Li HQ, Albach DC, Gotfredsen ChH (2008) Phytochemistry and molecular systematics of Triaenophora rupestris and Oreosolen wattii (Scrophulariaceae). Phytochemistry 69:2162–2166. doi:10.1016/j.phytochem.05.010
  • Kim YS, Kim YK, Xu H, Uddin R, Park NI, Kim HH, Chae SCh, Park SU (2012) Improvement of ornamental characteristics of Rehmannia elata through Agrobacterium rhizogenes-mediated transformation. Plant Omics J 5:376–380
  • Kitagawa I, Fukuda Y, Taniyama T, Yoshikawa M (1991) Chemical studies on crude drug processing. VII. On the constituents of Rehmanniae radix. (1): absolute stereostructures of rehmaglutins A, B and D isolated from Chinese Rehmanniae Radix, the dried root of Rehmannia glutinosa Libosch. Chem Pharm Bull 39:1171–1176
  • Kupeli E, Tatli II, Akdemir ZS, Yesilada E (2007) Bioassay-guided isolation of anti-inflammatory and antinociceptive glycoterpenoids from the flowers of Verbascum lasianthum Boiss. ex Bentham. J Ethnopharmacol 110:444–450. doi:10.1016/j.jep.2006.10.004
  • Matsumoto M, Shoyama Y, Nishioka I, Irino N (1989) Constituents of regenerated and shoot cultured root tissue of Rehmannia glutinosa. Phytochemistry 28:2331–2332
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco culture. Physiol Plant 15:473–497
  • Park SU, Kim YK, Lee SY (2009) Improved in vitro plant regeneration and micropropagation of Rehmannia glutinosa L. J Med Plants Res 3:31–34
  • Piątczak E, Królicka A, Wielanek M, Wysokińska H (2012) Hairy root cultures of Rehmannia glutinosa and production of iridoid and phenylethanoid glycosides. Acta Physiol Plant 34:2215–2224. doi:10.1007/s11738-012-1022-y
  • Piątczak E, Grzegorczyk-Karolak I, Wysokińska H (2014) Micropropagation of Rehmannia glutinosa Libosch.: production of phenolics and flavonoids and evaluation of antioxidant activity. Acta Physiol Plant 36:1693–1702. doi:10.1007/s11738-014-1544-6
  • Piątczak E, Kuźma Ł, Sitarek P, Wysokińska H (2015) Shoot organogenesis, molecular analysis and secondary metabolite production of micropropagated Rehmannia glutinosa Libosch. Plant Cell Tiss Org Cult 120:539–549. doi:10.1007/s11240-014-0620-3
  • Sanchez PM, Villarreal ML, Herrera-Ruiz M, Zamilpa A, Jiménez-Ferrer E, Trejo-Tapia G (2013) In vivo anti-inflammatory and anti-ulcerogenic activities of extracts from wild growing and in vitro plants of Castilleja tenuiflora Benth. (Orobanchaceae). J Ethnopharmacol 150:1032–1037. doi:10.1016/j.jep.2013.10.002
  • Shoyama Y, Nagano M, Nishioka I (1983) Clonal multiplication of Rehmannia glutinosa. Planta Med 48:124–128
  • Skucińska B (2001) Induction of genetic variation in vitro. Biotechnologia 3:145–151 (in Polish)
  • Subashri B, Pillai YJK (2014) In vitro regeneration of Bacopa monnieri (L.) Pennel.—a multipurpose medicinal plant. Int J Pharm Pharm Sci 6:559–563
  • Tasdemir D, Brun R, Franzblau SG, Sezgin Y, Calis I (2008) Evaluation of antiprotozoal and antimycobacterial activities of the resin glycosides and the other metabolites of Scrophularia cryptophila. Phytomedicine 15:209–215. doi:10.1016/j.phymed.2007.07.032
  • Thi TMN, Thwe AA, Tuan PA, Chae SCh, Prak SU (2012) Shoot organogenesis and plant regeneration from leaf culture of Rehmannia elata L. Life Sci J 9:882–885
  • Xu J, Wua J, Zhu LY, Shen H, Xu JD, Jensen SR, Jia XB, Zhang QW, Li SL (2012) Simultaneous determination of iridoid glycosides, phenethylalcohol glycosides and furfural derivatives in Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrometry. Food Chem 135:2275–22886. doi:10.1016/j.foodchem.2012.07.006
  • Zhang RX, Li MX, Jia ZP (2008) Rehmannia glutinosa: review of botany, chemistry and pharmacology. J Ethnopharmacol 117:199–214. doi:10.1016/j.jep.2008.02.018
  • Zhang L, Feng Jia Q, Xu J, Wang Z, Wu Y, Li Y (2011) Effects of bglucuronidase hydrolyzed products of harpagide and harpagoside on cyclooxygenase-2 (COX-2) in vitro. Bioorg Med Chem 19:4882–4886. doi:10.1016/j.bmc.2011.06.06
  • Zhao H, Tan J, Qi Ch (2007) Photosynthesis of Rehmannia glutinosa subjected to drought stress is enhanced by choline chloride through alleviating lipid peroxidation and increasing proline accumulation. Plant Growth Reg 51:255–262. doi:10.1007/s10725-007-9167-1

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b69cf266-b226-4a52-b7da-3f3118e2d62e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.