PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 1 |

Tytuł artykułu

Neotropical bats as indicators of environmental disturbance: What is the emerging message?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Science has searched for tools to indicate, measure or predict the responses of organisms to environmental disturbances. Neotropical bats have been identified as potential indicators and the number of articles using them is increasing. But contradictory results indicate the need to assess the viability to widely use bats for that purpose. A review on bat responses to forest fragmentation, logging, agricultural conversion or plant sucession was performed to detect patterns and problems, and to identify what is the emerging message. Variations of up to 17 times in the number of replicates, 360 times in the size of experimental areas, 166 times in the size of control areas, and 36 times in captures were detected. Almost 90% of the studies used mistnets, resulting in analyses biased towards phyllostomids. No clear pattern was observed regarding bat responses to the disturbances tested, from no effects on species richness between fragments and control areas, to higher abundances in the surrounding matrices. Most of the studies indicated species-specific responses, and conclusions were based, on average, on 20 species, a fraction of the regional richness. Neotropical bats should be used cautiously as indicators and generalizations should be avoided. Despite the problems identified, bats may contribute to the study of the topic in the Neotropics, as long as basic precautions are followed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

1

Opis fizyczny

p.143-151

Twórcy

  • Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Nelson Chaves s/n, Recife, PE Brazil 50670-420
autor
  • Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Nelson Chaves s/n, Recife, PE Brazil 50670-420

Bibliografia

  • 1. L. Albrecht , C. F. J. Meyer , and E. K. V. Kalko . 2007. Differential mobility in two small phyllostomid bats, Artibeus watsoni and Micronycteris microtis, in a fragmented Neotropical landscape. Acta Theriologica, 52: 141–149.[1] Google Scholar
  • 2. G. P. Asner , T. K. Rudel , T. M. Aide , R. Defries , and R. Emerson . 2009. A contemporary assessment of change in humid tropical forests. Conservation Biology, 23: 1386–1395. [2] Google Scholar
  • 3. E. Bernard 2001. Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. Journal of Tropical Ecology, 17: 115–126. [3] Google Scholar
  • 4. E. Bernard , and M. B. Fenton . 2002. Species diversity of bats (Chiroptera: Mammalia) in forest fragments, primary forests and savannas in Central Amazonia, Brazil. Canadian Journal of Zoology, 80: 1124–1140. [4] Google Scholar
  • 5. E. Bernard , and M. B. Fenton . 2003. Bat mobility and roosts in a fragmented landscape in central Amazonia, Brazil. Biotropica, 35: 262–277. [5] Google Scholar
  • 6. E. Bernard , and M. B. Fenton . 2007. Bats in a fragmented landscape: Species composition, diversity and habitat interactions in savannas of Santarem, Central Amazonia, Brazil. Biological Conservation, 134: 332–343. [6] Google Scholar
  • 7. E. Bernard , L. M. S. Aguiar , and R. B. MacHado . 2011. Discovering the Brazilian bat fauna: a task for two centuries? Mammal Review, 41: 23–39. [7] Google Scholar
  • 8. G. V. Bianconi , S. B. Mikich , and W. A. Pedro . 2004. Diversidade de morcegos (Mammalia, Chiroptera) em remanescentes florestais do município de Fênix, noroeste do Paraná, Brasil. Revista Brasileira de Zoologia, 21: 943–954. [8] Google Scholar
  • 9. G. V. Bianconi , S. B. Mikich , and W. A. Pedro . 2006. Movements of bats (Mammalia, Chiroptera) in Atlantic forest remnants in southern Brazil. Revista Brasileira de Zoologia, 23: 1199–1206. [9] Google Scholar
  • 10. BIRDLIFE INTERNATIONAL. 2008a. Critically Endangered birds: a global audit. BirdLife International, Cambridge, UK. [11] Google Scholar
  • 11. BIRDLIFE INTERNATIONAL. 2008b. State of the World's birds: indicators for our changing world. BirdLife International, Cambridge, UK. [10] Google Scholar
  • 12. V. Carignan , and M. A. Vlllard . 2002. Selecting indicator species to monitor ecological integrity: a review. Environmental Monitoring and Assessment, 78: 45–61. [12] Google Scholar
  • 13. T. M. Caro , and G. O'Doherty . 1999. On the use of surrogate species in conservation biology. Conservation Biology, 13: 805–814. [13] Google Scholar
  • 14. Castro-Arellano I , S. J. Presley , L. N. Saldanha , M. G. Willig , and J. M. Wunderle Jr. 2007. Effects of reduced impact logging on bat biodiversity in terra firme forest of lowland Amazonia. Biological Conservation, 138: 269–285. [14] Google Scholar
  • 15. A. A. Castro-Luna , V. J. Sosa , and G. Castillo-Campos . 2007. Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in southeastern Mexico. Animal Conservation, 10: 219–228. [15] Google Scholar
  • 16. P. Charles-Dominique 1991. Feeding strategy and activity budget of the frugivorous bat Carollia perspicillata (Chiroptera: Phyllostomidae) in French Guiana. Journal of Tropical Ecology, 7: 243–256. [16] Google Scholar
  • 17. F. M. Clarke , D. V. Pio , and P. A. Racey . 2005a. A comparison of logging systems and bat diversity in the Neotropics. Conservation Biology, 19: 1194–1204. [17] Google Scholar
  • 18. F. M. Clarke , L. V. Rostant , and P. A. Racey . 2005b. Life after logging: post-logging recovery of a Neotropical bat community. Journal of Applied Ecology, 42: 409–420. [18] Google Scholar
  • 19. J. F. Cosson , J. M. Pons , and D. Masson . 1999. Effects of forest fragmentation on frugivorous and nectarivorous bats in French Guiana. Journal of Tropical Ecology, 15: 515–534. [19] Google Scholar
  • 20. V. M. Cottontail , N. Wellinghausen , and E. K. V. Kalko . 2009. Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panama. Parasitology, 136: 1133–1145. [20] Google Scholar
  • 21. E. R. Dumont 2003. Bats and fruit: An ecomorphological approach. Pp. 398–429, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, 779 pp. [21] Google Scholar
  • 22. A. Estrada , and R. Coates-Estrada . 2001. Species composition and reproductive phenology of bats in a tropical landscape at Los Tuxtlas, Mexico. Journal of Tropical Ecology, 17: 627–646. [22] Google Scholar
  • 23. A. Estrada , and R. Coates-Estrada . 2002. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biological Conservation, 2: 237–245. [23] Google Scholar
  • 24. S. Estrada-Villegas , C. F. J. Meyer , and E. K. V. Kalko . 2010. Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biological Conservation, 143: 597–608. [24] Google Scholar
  • 25. R. M. Ewers , and R. K. Didham . 2006. Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81: 117–142. [25] Google Scholar
  • 26. L. Fahrig 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology and Systematics, 34: 487–515. [26] Google Scholar
  • 27. D. Faria 2006. Phyllostomid bats of a fragmented landscape in the north-eastern Atlantic forest, Brazil. Journal of Tropical Ecology, 22: 531–542. [27] Google Scholar
  • 28. D. Faria , and J. Baumgarten . 2007. Shade cacao plantations (Theobroma cacao) and bat conservation in southern Bahia, Brazil. Biodiversity and Conservation, 16: 291–312. [28] Google Scholar
  • 29. M. B. Fenton , L. Acharya , D. Audet , M. B. C. Hickey , C. Merriman , M. K. Obrist , and D. M. Syme . 1992. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica, 24: 440–446. [29] Google Scholar
  • 30. T. H. Fleming 1986. Opportunism versus specialization: the evolution of feeding strategies in frugivorous bats. Pp. 105–118, in Frugivores and seed dispersal ( A. Estrada and T. H. Fleming , eds.). Dr. W. Junk Publishers, Dordrecht, 392 pp. [30] Google Scholar
  • 31. T. H. Fleming 1988. The short-tailed fruit bat. University of Chicago Press, Chicago, 308 pp. [31] Google Scholar
  • 32. FAO (FOOD AND AGRICULTURE ORGANIZATION). 2011. The state of the tropical rainforest in the Amazon Basin, Congo Basin and Southeast Asia a report prepared for the Summit of the Three Rainforest Basins, Brazzaville, Republic of Congo, 31 May 3 June, 2011. FAO, Rome, 81 pp. [32] Google Scholar
  • 33. A. L. Gardner 1977. Feeding habits. Pp. 293–350, in Biology of bats of the New World family Phyllostomatidae, Part II ( R. J. Baker , J. K. Jones , and D.C. Carter , eds.). Special Publications, The Museum, Texas Tech University, 13: 1–364. [33] Google Scholar
  • 34. A. L. Gardner (ed.). 2008. Mammals of South America, Volume 1 marsupials, xenarfhrans, shrews, and bats. University of Chicago Press, Chicago, 669 pp. [34] Google Scholar
  • 35. P. M. Gorresen , and M. R. Willig . 2004. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. Journal of Mammalogy, 85: 688–697. [35] Google Scholar
  • 36. P. M. Gorresen , M. R. Willig , and R. E. Strauss . 2005. Multivariate analysis of scale-dependent associations between bats and landscape structure. Ecological Applications, 15: 2126–2136. [36] Google Scholar
  • 37. A. M. Greenhall , and U. Schmidt . 1988. The natural history of vampire bats. CRC Press, Florida, 264 pp. [37] Google Scholar
  • 38. J. A. Griffith 1997. Connecting ecological monitoring and ecological indicators: a review of the literature. Journal of Environmental Systems, 26: 325–363. [38] Google Scholar
  • 39. C. O. Handley Jr. , D. E. Wilson , and A. L. Gardner . 1991. Demography and natural history of the common fruit bat, Artibeus jamaicensis, on Barro Colorado Island, Panama. Smithsonian Contributions to Zoology, 511: 1–173. [39] Google Scholar
  • 40. E. R. Heithaus , and T. H. Fleming . 1978. Foraging movements of a frugivorous bat, Carollia perspicillata (Phyllostomatidae). Ecological Monographs, 48: 127–143. [40] Google Scholar
  • 41. K. Fienle , K. F. Davies , M. Kleyer , C. Margules , and J. Settele . 2004. Predictors of species sensitivity to fragmentation. Biodiversity and Conservation, 13: 207–251. [41] Google Scholar
  • 42. M. Henry , and E. K. V. Kalko . 2007. Foraging strategy and breeding constraints of Rhinophylla pumilio (Phyllostomidae) in the Amazon lowlands. Journal of Mammalogy, 88: 81–93. [42] Google Scholar
  • 43. M. Henry , J. F. Cosson , and J. M . Pons . 2007a. Abundance may be a misleading indicator of fragmentation-sensitivity: The case of fig-eating bats. Biological Conservation, 139: 462–467. [43] Google Scholar
  • 44. M. Henry , J. M. Pons , and J. F. Cosson . 2007b. Foraging behaviour of a frugivorous bat helps bridge landscape connectivity and ecological processes in a fragmented rainforest. Journal of Animal Ecology, 76: 801–813. [44] Google Scholar
  • 45. J. Hilty , and A. Merenlender . 2000. Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation, 92: 185–197. [45] Google Scholar
  • 46. M. A. Horner , T. H. Fleming , and C. T. Sahley . 1998. Foraging behaviour and energetics of a nectar-feeding bat, Leptonycteris curasoae (Chiroptera: Phyllostomidae). Journal of Zoology (London), 244: 575–586. [46] Google Scholar
  • 47. R. L. Hutto 1998. Using landbirds as an indicator species group. Pp. 75–91, in Avian conservation: research andmanagement ( J. M. Marzluff and R. Sallabanks , eds.). Island Press, Washington, D.C., 575 pp. [47] Google Scholar
  • 48. G. Jones , D. S. Jacobs , T. H. Kunz , M. R. Willig , and P. A. Racey . 2009. Carpe noctem: the importance of bats as bioindicators. Endangered Species Research, 8: 93–115. [48] Google Scholar
  • 49. E. K. V. Kalko , E. A. Herre , and C. O. Handley Jr. 1996. Relation of fig fruit characteristics to fruit-eating bats in the New and Old World tropics. Journal of Biogeography, 23: 565–576. [49] Google Scholar
  • 50. B. T. Klingbeil , and M. R. Willig . 2009. Guild-specific responses of bats to landscape composition and configuration in fragmented Amazonian rainforest. Journal of Applied Ecology, 46: 203–213. [50] Google Scholar
  • 51. P. Koskimies 1989. Birds as a tool in environmental monitoring. Annales Zoologici Fennici, 26: 153–166. [51] Google Scholar
  • 52. C. Kremen 1992. Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications, 2: 203–217. [52] Google Scholar
  • 53. C. Kremen 1994. Biological inventory using target taxa: a case study of the butterflies of Madagascar. Ecological Applications, 4: 407–422. [53] Google Scholar
  • 54. T. H. Kunz , and K. A. Ingalls . 1994. Folivory in bats: an adaptation derived from frugivory. Functional Ecology, 8: 665–668. [54] Google Scholar
  • 55. T. H. Kunz , R. Hodkison , and C. Weise . 2009. Methods of capturing and handling bats. Pp. 3–35, in Ecological and behavioral methods for the study of bats, 2nd edition ( T. H. Kunz and S. Parsons , eds.). The Johns Hopkins University Press, Baltimore, 901 pp. [55] Google Scholar
  • 56. P. B. Landres , J. Verner , and J. W. Thomas . 1988. Ecological uses of vertebrate indicator species: a critique. Conservation Biology, 2: 316–328. [56] Google Scholar
  • 57. W. F. Laurance , J. L. C. Camargo , R. C. C. Luizão , S. G. Laurance , S. L. Pimm , E. M. Bruna , P. C. Stouffer , G. B. Williamson , J. BenÍtez-Malvido , H. L. Vasconcelos , et al. 2011. The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, 144: 56–67. [57] Google Scholar
  • 58. S. L. Lewis , J. Lloyd , S. Stich , E. T. A. Mitchard , and W. F. Laurance . 2009. Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology and Systematics, 40: 529–49. [58] Google Scholar
  • 59. B. K. Lim , and M. D. Engstrom . 2001. Species diversity of bats (Mammalia: Chiroptera) in Iwokrama Forest, Guyana, and the Guianan subregion: implications for conservation. Biodiversity and Conservation, 10: 613–657. [59] Google Scholar
  • 60. A. P. Loayza , and B. A. Loiselle . 2008. Preliminary information on the home range and movement patterns of Sturnira lilium (Phyllostomidae) in a naturally fragmented landscape in Bolivia. Biotropica, 40: 630–635. [60] Google Scholar
  • 61. T. A. Lobova , C. K. Geiselman , and S. A. Mori . 2009. Seed dispersal by bats in the Neotropics. Memoirs of the New York Botanical Garden, 101: 1–471. [61] Google Scholar
  • 62. A. C. M. Martins , E. Bernard , R. Gregorin , and W. A. S. Silva . 2011. Filling data gaps on the diversity and distribution of Amazonian bats (Chiroptera): the case of Amapá, easternmost Brazil. Zoologia, 28: 177–185. [62] Google Scholar
  • 63. D. W. McKenney , R. A. Sims , M. E. Soulé , and B.G. MacKey . 1994. Workshop results. Pp. 1–22, in Towards a set of biodiversity indicators for Canadian forests. Proceedings of a Forest Biodiversity Indicators Workshop ( D. W. McKenney , R. A. Sims , M. E. Soulé , B. G. MacKey , and K. L. Campbell , eds.). Natural Resources Canada, Sault SteMarie, Ontario, 133 pp. [63] Google Scholar
  • 64. R. A. Medellín 2000. Bat diversity and abundance as indicators of disturbance in Neotropical rain forests. Conservation Biology, 14: 1666–1675. [64] Google Scholar
  • 65. C. F. J. Meyer , and E. K. V. Kalko . 2008a. Assemblagelevel responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. Journal of Biogeography, 35: 1711–1726. [66] Google Scholar
  • 66. C. F. J. Meyer , and E. K. V. Kalko . 2008b. Bat assemblages on Neotropical land-bridge islands: nested subsets and null model analyses of species co-occurrence patterns. Diversity and Distributions, 14: 644–654. [67] Google Scholar
  • 67. C. F. J. Meyer , J. Frund , W. P. Lizano , and E. K. V. Kalko . 2008. Ecological correlates of vulnerability to fragmentation in Neotropical bats. Journal of Applied Ecology, 45: 381–391. [65] Google Scholar
  • 68. C. F. J. Meyer , E. K. V. Kalko , and G. Kerth . 2009. Smallscale fragmentation effects on local genetic diversity in two phyllostomid bats with different dispersal abilities in Panama. Biotropica, 41: 95–102. [68] Google Scholar
  • 69. S. Montiel , A. Estrada , and P. León . 2006. Bat assemblages in a naturally fragmented ecosystem in the Yucatan Peninsula, Mexico: species richness, diversity and spatio-temporal dynamics. Journal of Tropical Ecology, 22: 267–276. [69] Google Scholar
  • 70. R. Muscarella , and T. H. Fleming . 2007. The role of frugivorous bats in forest sucession. Biological Reviews, 82: 573–590. [70] Google Scholar
  • 71. N. Myers , R. A. Mttermeler , C. G. Mttermeier , G. A. B. Fonseca , and J. Kent . 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858. [71] Google Scholar
  • 72. R. F. Noss 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, 4: 355–364. [72] Google Scholar
  • 73. C. Numa , J. R. Verdú , and P. Sánchez-Palomino . 2005. Phyllostomid bat diversity in a variegated coffee landscape. Biological Conservation, 122: 151–158. [73] Google Scholar
  • 74. J. G. Ochoa 2000. Efectos de la extracción de maderas sobre la diversidad de mamíferos pequeños en bosques de tierras bajas de la Guyana Venezolana. Biotropica, 32: 146–164. [74] Google Scholar
  • 75. D. L. Pearson 1994. Selecting indicator taxa for the quantitative assessment of biodiversity. Philosophical Transactions of the Royal Society of London, 345B: 75–79. [75] Google Scholar
  • 76. S. L. Peters , J. R. Malcolm , and B. L. Zimmerman . 2006. Effects of selective logging on bat communities in the Southeastern Amazon. Conservation Biology, 20: 1410–1421. [76] Google Scholar
  • 77. E. Pineda , C. Moreno , F. Escobar , and G. Halffter . 2005. Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conservation Biology, 19: 400–410. [77] Google Scholar
  • 78. N. Pinto , and T. H. Keitt . 2008. Scale-dependent responses to forest cover displayed by frugivore bats. Oikos, 117: 1725–1731. [78] Google Scholar
  • 79. S. J. Presley 2008. Effects of reduced-impact logging and forest physiognomy on bat populations of lowland Amazonian forest. Journal of Applied Ecology, 45: 14–25. [79] Google Scholar
  • 80. M. Quesada , K. E. Stoner , V. Rosas-Guerrero , C. Palacios-Guevara , and J. A. Lobo . 2003. Effects of habitat disruption on the activity of nectarivorous bats in a dry forest: implications for the reproductive success of the Neotropical tree Ceiba grandiflora. Oecologia, 135: 400–406. [80] Google Scholar
  • 81. N. R. Reis , M. L. S Barbieri , I. P. Peracchi Lima , and A. L. Peracchi , 2003. O que é melhor para manter a riqueza de espécies de morcegos (Mammalia, Chiroptera): um fragmento florestal grande ou vârios fragmentos de pequeno tamanho? Revista Brasileira de Zoologia, 20: 225–230. [81] Google Scholar
  • 82. T. K. Rudel , R. Defries , G. P. Asner , and W. F. Laurance . 2009. Changing drivers of deforestation and new opportunities for Conservation. Conservation Biology, 23: 1396–1405. [82] Google Scholar
  • 83. E. M. Sampaio , E. K. V. Kalko , E. Bernard , B. Rodríguez-Herrera , and C. O. Handley Jr. 2003. A biodiversity assessment of bats (Chiroptera) in a tropical lowland rainforest of Central Amazonia, including methodological and conservation considerations. Studies on Neotropical Fauna and Environment, 38: 17–31. [83] Google Scholar
  • 84. J. Schipper , J. S. Chanson , F. Chiozza , N. A. Cox , M. Hoffmann , V. Katariya , J. Lamoreux , A. S. L. Rodrigues , S. N. Stuart , and H. J. Temple , et al. 2008. The status of the World's land and marine mammals: diversity, threat, and knowledge. Science, 322: 225–230. [84] Google Scholar
  • 85. H.-U. Schnitzler , C. F. Moss , and A. Denzinger . 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386–394. [85] Google Scholar
  • 86. M. D. Schulze , N. E. Seavy , and D. F. Whitacre . 2000. A comparison of the phyllostomid bat assemblages in undisturbed Neotropical forest and in forest fragments of a slashand-burn farming mosaic in Peten, Guatemala. Biotropica, 32: 174–184. [86] Google Scholar
  • 87. N. B. Simmons , and R. S. Voss . 1998. The mammals of Paracou French Guiana: a Neotropical lowland rainforest fauna. Part I. Bats. Bulletin of the American Museum of Natural History, 237: 1–219. [87] Google Scholar
  • 88. P. J. Soriano , and J. G. Ochoa . 2001. The consequences of timber exploitation for bat communities in tropical America. Pp. 153–166, in The cutting edge: conserving wildlife in logged tropical forests ( A. Fimbel , A. Grajal , and J. Robinson , eds.). Columbia University Press, New York, 808 pp. [88] Google Scholar
  • 89. E. F. Stockwell 2001. Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae). Journal of Zoology (London), 254: 505–514. [89] Google Scholar
  • 90. S. M. Swartz , P. W. Freeman , and E. F. Stockwell . 2003. Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology. Pp. 257–300, in Bat ecology ( T. H. Kunz and M. B. Fenton eds.). University of Chicago Press, Chicago, 779 pp. [90] Google Scholar
  • 91. M. Tabarelli , A. V. Aguiar , M. C. Ribeiro , J. P. Metzeger , and C. A. Peres . 2010. Prospects for biodiversity conservation in the Atlantic forest: lessons from aging human-modified landscapes. Biological Conservation, 143: 2328–2340. [91] Google Scholar
  • 92. J. Tergorgh 1974. Preservation of natural diversity: the problem of extinction prone species. BioScience, 24: 715–722. [92] Google Scholar
  • 93. E. C. Underwood , and B. L. Fisher . 2006. The role of ants in conservation monitoring: if, when, and how. Biological Conservation, 132: 166–182. [93] Google Scholar
  • 94. M. J. Vonhof , and M. B. Fenton . 2004. Roost availability and population size of Thyroptera tricolor, a leaf-roosting bat, in north-eastern Costa Rica. Journal of Tropical Ecology, 20: 291–305. [94] Google Scholar
  • 95. J. I. Watling , and M. A. Donnelly . 2006. Fragments as islands: a synthesis of faunal tesponses to habitat patchiness. Conservation Biology, 20: 1016–1025. [95] Google Scholar
  • 96. D. M. Watson 2002. A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. Journal of Biogeography, 29: 823–834. [96] Google Scholar
  • 97. M. R. Willig , S. J. Presley , C. P. Bloch , C. L. Hice , S. P. Yanoviak , M. M. Díaz , L. Arias Chauca , V. Pacheco , and S. C. Weaver . 2007. Phyllostomid bats of lowland Amazonia: effects of habitat alteration on abundance. Biotropica, 39: 737–746. [97] Google Scholar
  • 98. B. E. Young , S. N. Stuart , J. S. Chanson , N. A. Cox , and T. M. Boucher . 2004. Disappearing jewels: the status of New World amphibians. NatureServe, Arlington, Virginia, 60 pp. [98] Google Scholar

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b66edf77-19bf-447d-94ce-2ef2f2ca0bbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.