PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 46 |

Tytuł artykułu

Anopheline mosquitoes and the malaria scourge

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The high prevalence of malaria in Africa has defiled many strategies aimed at its eradication. Researchers from various fields have tried without success in this fight against mosquito and its malaria disease. Annually billions of dollars are spent in the design of programs which are aimed at combating this dreaded disease. However all this spending seems to go down the drain as malaria and its vector mosquitoes celebrate their unflinching victory. Current control measures focusing on ways of preventing the disease vis- a -vis, protect man from the vectors “anopheline mosquito” are the mainstay of malaria prevention and control. Many of these control measures are operational with each contributing in its little way. The use of Long Lasting Insecticide Treated Nets (LLITN) and Indoor Residual Sprays (IRS) are well established strategies with global recognition and currently ongoing in Africa. However, as a result of shortcomings in these major control measures, new strategies with hopes of blissful success are been sought after. Larviciding (abortion of metamorphosis) and constant and adequate environmental sanitation seems to be the next option available for use. This article therefore takes a look at the vector- anopheline mosquito, its ecology, productivity and distribution. It also considers malaria and the various control and preventive measures currently targeted at its eradication.

Wydawca

-

Rocznik

Tom

46

Opis fizyczny

p.31-40,ref.

Twórcy

autor
  • Department of Microbiology, University of Nigeria, Nsukka, Nigeria
autor
  • Department of Microbiology, University of Nigeria, Nsukka, Nigeria

Bibliografia

  • [1] Aymere, A. and Laikemariam, K. (2006). Vector and Rodent Control. Lecture Notes, Degree and Diploma Programs for Environmental Health Science Students. Haramaya University. Pp 17-20.
  • [2] Merritt, R.W., Dadd, R.H. and Walker, E.D. (1992). Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annual Review of Entomology, 37: 349-376.
  • [3] Clements, A.N. (2000). The Biology of Mosquitoes, Volume 1: Development, Nutrition and Reproduction. New York: CABI publishing. 536 p.
  • [4] Mutuku, F.M., Alaii, J.A., Bayoh, M.N., Gimnig, J.E., Vulule, J.M., Walker, E.D., Kabiru, E., Hawley, W. A. (2006). Distribution, description, and local knowledge of larval habitats of Anopheles gambiae s.l. in a village in western Kenya. American Journal of Tropical Medicine and Hygiene, 74: 44-53.
  • [5] Wendy, C.V., Goddard, J. and Harrison, B. (2012). Identification Guide to Adult Mosquitoes in Mississipp.Mississippi State University Extension Service, 300-04-12.
  • [6] CDC (2004). Multifocal autochthonous transmission of malaria—Florida, 2003, CDC, MMWR, 53: 412-413.
  • [7] Koenraadt, C.J.M., Githeko, A.K. and Takken, W. (2004). The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan village. Acta Tropica 90: 141-153.
  • [8] Mwangangi, J.M., Mbogo, C.M., Muturi, E.J., Nzovu, J.G., Githure, J.I., Yan, G. (2007a). Spatial distribution and habitat characterisation of Anopheles larvae along the Kenyan coast. Journal of Vector Borne Diseases, 44: 44-51.
  • [9] Minakawa, N., Sonye, G and Yan, G (2005). Relationships between occurrence of Anopheles gambiae s.l. (Diptera: Culicidae) and size and stability of larval habitats. Journal of Medical Entomology, 42: 295-300.
  • [10] Robert, V., Awono-Ambene, H.P. and Thioulouse, J. (1998). Ecology of larval mosquitoes, with a special reference to Anopheles arabiensis (Diptera: Culicidae) in market-garden wells in urban Dakar, Senegal. Journal of Medical Entomology, 35:948-955.
  • [11] Gimnig, J.E., Ombok, M., Kamau, L. and Hawley, W.A. (2001). Characteristics of larval anopheline (Diptera: Culicidae) habitats in western Kenya. Journal of Medical Entomology, 38: 282-288.
  • [12] Huang, J., Walker, E.D., Vulule, J. and Miller, J.R. (2007). The influence of darkness and visual contrast on oviposition by Anopheles gambiae in moist and dry substrates. Physiological Entomology, 32: 34-40.
  • [13] Minakawa, N., Mutero, C.M., Githure, J.I., Beier, J.C. and Yan. G. (1999). Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. American Journal of Tropical Medicine and Hygiene, 61: 1010 -1016.
  • [14] Munga, S., Minakawa, N., Zhou, G., Barrack, O.J and Githeko, A.K, Yan., G. (2005). Oviposition site preference and egg hatchability of Anopheles gambiae: effects of land cover types. Journal of Medical Entomology, 42: 993-997.
  • [15] Sattler, M.A, Mtasiwa, D., Kiama, M., Premji, Z., Tanner, M., Killeen, G.F., Lengeler, C. (2005). Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dares Salaam (Tanzania) during an extended dry period. Malaria Journal 4(4): 1475-2875.
  • [16] Sumba, L.A, Guda, T.O, Deng, A.L, Hassanali, A, Beier, J.C, Knols, B.G.J. (2004). Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. International Journal of Tropical Insect Science, 24: 260-265.
  • [17] Munga, S., Minakawa, N., Zhou, G., Barrack, O.J, Githeko, A.K., Yan, G. (2006). Effects of larval competitors and predators on oviposition site selection of Anopheles gambiae sensu stricto. Journal of Medical Entomology, 43: 221-224.
  • [18] Mwangangi, J.M., Mbogo, C.M., Muturi, E.J., Nzovu, J.G., Kabiru, E.W., Githure, J.I., Novak, R. J., Beier, J.C. (2007b). Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan coast. Journal of Vector Borne Diseases, 44: 122-127.
  • [19] Edillo, F.E., Touré, Y.T., Lanzaro, G.C., Dolo, G. and Taylor, C.E. (2002). Spatial and habitat distribution of Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) in Banambani village, Mali. Journal of Medical Entomology, 39: 70-77.
  • [20] Ameneshewa, B., Service, M.W. (1996). The relationship between female body size and survival rate of the malaria vector Anopheles arabiensis in Ethiopia. Medical and Veterinary Entomology, 10: 170-172.
  • [21] Lyimo, E.O and Takken, W. (1993). Effects of adult body size on fecundity and the pregravid rate of Anopheles gambiae females in Tanzania. Medical and Veterinary Entomology, 7: 328-332.
  • [22] Paaijmans, K.P. (2008). Weather, water and malaria mosquito larvae-The impact of meteorological factors on water temperature and larvae of the Afro-tropical malaria vector Anopheles gambiae Giles ISBN 978-90-8504-750-6
  • [23] Bayoh, M.N. and Lindsay, S.W (2003). Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bulletin of Entomological Research, 93: 375-381.
  • [24] Chen, H., Fillinger, U. and Yan, G (2006). Oviposition behavior of female Anopheles gambiae in western Kenya inferred from microsatellite markers. American Journal of Tropical Medicine and Hygiene, 75: 246-250.
  • [25] Gimnig, J.E., Ombok, M., Otieno, S., Kaufman, M.G., Vulule, J.M., Walker, E.D. (2002). Density dependent development of Anopheles gambiae (Diptera:Culicidae) larvae in artificial habitats. Journal of Medical Entomology 39: 162 – 172.
  • [26] Service, M.W. (1977). Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying. Journal of Medical Entomology, 13: 535-545.
  • [27] Okogun, G.R.A. (2005). Life-table analysis of Anopheles malaria vectors: generational mortality as tool in mosquito vector abundance and control studies. Journal of Vector Borne Diseases, 42: 45-53.
  • [28] Kirby, M.J. and Lindsay, S.W. (2004). Responses of adult mosquitoes of two sibling species, Anopheles arabiensis and A. gambiae s.s. (Diptera: Culicidae), to high temperatures. Bulletin of Entomological Research, 94: 441-448.
  • [29] Coetzee, M., Craig, M. and Le-Sueur, D. (2000). Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitology Today, 16: 74-77.
  • [30] Minakawa, N., Seda, P. and Yan, G (2002). Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. American Journal of Tropical Medicine and Hygiene, 67: 32-38.
  • [31] Charlwood, J.D., and Edoh, D. (1996). Polymerase chain reaction used to describe larval habitat use by Anopheles gambiae complex (Diptera: Culicidae) in the environs of Ifakara, Tanzania. Journal of Medical Entomology, 33: 202-204.
  • [32] Touré, Y.T., Dolo, G., Petrarca, V., Traoré, S.F., Bouaré, M, Dao, A., Carnahan, J., Taylor, C.E. (1998). Mark -release recapture experiments with Anopheles gambiae s.l. in Banambani village, Mali, to determine population size and structure. Medical and Veterinary Entomology, 12: 74-83.
  • [33] Gu, W., Regens, J.L., Beier, J.C. and Novak, R.J. (2006). Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Proceedings of the National Academy of Sciences, 103: 17560-17563.
  • [34] Afrane, Y.A., Lawson, B.W., Githeko, A.K., Yan, G. (2005). Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in western Kenya highlands. Journal of Medical Entomology, 42: 974-980.
  • [35] Maharaj, R. (2003). Life table characteristics of Anopheles arabiensis (Diptera: Culicidae) under simulated seasonal conditions. Journal of Medical Entomology, 40: 737-742.
  • [36] Charlwood, J.D., Vij, R. and Billingsley, P.F. (2000). Dry season refugia of malariatransmitting mosquitoes in a dry savannah zone of East Africa. American Journal of TropicalMedicine and Hygiene, 62: 726-732.
  • [37] Gillies, M.T. and Wilkes, T.J. (1965). A study on the age-composition of populations of Anopheles gambiae Giles and A. funestus Giles in north-eastern Tanzania. Bulletin of Entomological Research, 56: 237-262.
  • [38] Beatty, M.E., Letson, W., Edgil, D.M., Margolis, H. (2007). Estimating the total world population at risk for locally acquired dengue infection. Proceedings of 56th Annual Meeting of American Society of Tropical Medicine and Hygiene, Philadelphia, Pennsylvania, USA, 4-8.
  • [39] WHO/UNICEF, (2005). World Malaria Report. Roll Back Malaria partnership, WHO/UNICEF. http://rbm.who.int/wmr2005/.
  • [40] Centers for Disease Control (CDC) (2007) Malaria facts. http://www.cdc.gov/malaria/facts.htm
  • [41] Nejla, B.S. (2007). The Possession Versus Use of Mosquito Nets for Children Under Five in Kenya. Faculty of Arts & Sciences, Georgetown University, Washington DC.
  • [42] National Environment Agency, (1995). Scope of works for mosquito control. Environmental health department, USA.
  • [43] WHO, (1992). Vector resistance to pesticides. 15th Report of the Export Committee on Vector Biology and Control. WHO. Technical. Report. Series. 818.
  • [44] WHO, (2005). Guidelines for Laboratory and Field Testing of Mosquito Larvicides. WHO communicable disease control, prevention and eradication. WHO pesticide evaluation scheme. WHO/CDS/WHOPES/GCDPP/2005.13.
  • [45] Roll Back Malaria, (2006). Country Needs Assessment. http://www.rbm.who.int/cmc_upload/0/000/015/362/RBMInfosheet_11.htm.
  • [46] Kelly-Hope, L., Ranson, H. and Hemingway, J. (2008): Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infectious Diseases, 8:387-389.
  • [47] Najera, J.A. and Zaim, M (2002). Decision making criteria and procedures for the judicious use of insecticides. In vol.WHO/CDS/WHOPES/.5 Rev.1. Geneva: World Health Organization.
  • [48] Awolola, T.S., Brooke, B.D., Hunt, R.H. and Coetze, M. (2002). Resistance of the malaria vector Anopheles gambiae s.s. to pyrethroid insecticides, in south-western, Nigeria. Annals of Tropical Medical Parasitology, 96:849-852
  • [49] N'Guessan, R., Darriet, F., Guillet, P., Carnevale, P., Traore-Lamizana, M., Corbel, V., Koffi, A. A. and Chandre, F (2003). Resistance to carbosulfan in Anopheles gambiae from Ivory Coast, based on reduced sensitivity of acetylcholinesterase. Medical and Veterinary Entomology, 17:19-25
  • [50] Elissa, N., Mouchet, J., Riviere, F., Meunier, J. Y. and Yao, K, (1993). Resistance of Anopheles gambiae s.s. to pyrethroids in Cote d'Ivoire. Ann soc Belg Med Tropica, 73: 291- 294
  • [51] WHO, (2006). Pesticides and their Application for the Control of Vectors and Pests of Public Health Importance. Geneva, WHO Pesticide Evaluation Scheme
  • [52] Florida Mosquito Control (2009). Florida Coordinating Council on Mosquito Control: The state of the mission as defined by mosquito controllers, regulators, and environmental managers. Vero Beach, FL: University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory
  • [53] Nandita, C., Anupam, G. and Goutam, C. (2008). Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti. BMC Complementary & Alternative Medicine, 1186/1472-6882-8-10
  • [54] Ubulom, M. E., Imandeh, N. G., Udobi, C.E. and IIya, I. (2012). Larvicidal and Antifungal Properties of Picralima nitida (Apocynaceae) Leaf Extracts. European Journal of Medicinal Plants, 2(2): 132-139
  • [55] Nwabor, Ozioma F., Dibua, Esther U. M , Nnamonu, Ikechukwu E., Odiachi, Osita, Edeh, Gloria O, Ezechukwu, Samuel C, Rex E. T., Stanislaus I. (2014). An investigation of the lethality of Picralima nitida, Family Apocynaceae in malaria vector control. Advances in Life Science and Technology; 23:77-82.
  • [56] CDPH, (2010). Best Management Practices for Mosquito Control on California State Properties: http://www.westnile.ca.gov/resources.php
  • [57] Omoya, F.O. and Akinyosoye, F.A. (2011). Evaluation of larvicidal potency of some entomopathogenic bacteria isolated from insect cadavars on Anopheles arabiensis larvae in Nigeria. Int J Pharm Biomed Res., 2(3): 145-148
  • [58] WHO, (2012). Global Plan for Insecticide Resistance Management in Malaria vector. Geneva.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-b586b08b-1d4e-42fa-b640-210984db2946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.