Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Transfer of active ingredients from plant protection products to a honeybee (Apis mellifera F.) hive from winter oilseed rape crops protected with conventional methods

Warianty tytułu

Języki publikacji



Field tests verified and evaluated a pesticide’s active ingredient transfer to honeybee hives from rapeseed crops protected according to current programs. Samples of rapeseed flowers, leaves, and soil were collected, as well as of worker honeybees, the brood, and honey from hives located in the crops. They were evaluated for the presence of four insecticides and five fungicides. In flower samples and leaf samples flutriafol at plantation 1 and azoxystrobin at plantation 2 were found at the highest levels. In honeybees and in the brood, five AIs were detected at plantation 1, of which the highest levels were observed for flutriafol (25.5 μg/kg of honeybee) and picoxystrobin (7.3 μg/kg of brood). At plantation 2, residues of three and two AIs were detected in honeybees and in the brood, respectively, of which chlorpyrifos was at the highest level (19.5 μg/kg of honeybee, and 2.8 μg/kg of brood). For both plantations, residues of three AIs were found in honey. The AI levels in honey did not exceed 3.8% of acceptable maximum residue level at plantation 1, and 2.8% at plantation 2. The percentage of acceptable daily intake did not exceed 0.01%.

Słowa kluczowe








Opis fizyczny



  • Department of Analytical Chemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
  • Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
  • Department of Analytical Chemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
  • Department of Analytical Chemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
  • Department of Analytical Chemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland


  • 1. CSO (CENTRAL STATISTICAL OFFICE). Production of agricultural and horticultural crops in 2015. Agriculture Department, Zakład Wydawnictw Statystycznych, Warszawa, 2016. Available online: (accessed on 27.06.2017)
  • 2. GWIAZDOWSKI R. Choroby i ochrona rzepaku ozimego. Instytut Hodowli i Aklimatyzacji Roślin-Państwowy Instytut Badawczy, 2004. Available online: (accessed on 27.06.2017)
  • 3. THE HONEYBEE GENOME SEQUENCING CONSORTIUM. Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 443, 931, 2006.
  • 4. IWASA T., MOTOYAMA N., AMBROSE J.T., ROE R.M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 23 (5), 371, 2004.
  • 5. CHAUZAT M.-P., CARPENTIER P., MARTEL A.-C., BOUGEARD S., COUGOULE N., PORTA P., LACHAIZE J., MADEC F., AUBERT M., FAUCON J.-P. Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ. Entomol. 38 (3), 514, 2009.
  • 6. SADŁO S., SZPYRKA E., PIECHOWICZ B., GRODZICKI P. A case study on toxicological aspects of the pest and disease control in the production of the high-quality raspberry (Rubus idaeus L.). J. Environ. Sci. Health. 50 (1), 8, 2015.
  • 7. PIECHOWICZ B., SADŁO S., SZPYRKA E., STAWARCZYK K., STAWARCZYK M., GRODZICKI P. Disappearance of some fungicides in mature apples immediately before supplying fruit to the consumer. Fresen. Environ. Bull. 25 (10), 4246, 2016.
  • 8. EU Pesticide Database, 2017. Available online: (accessed on 27.06.2017)
  • 9. CSO (CENTRAL STATISTICAL OFFICE). Agriculture in 2015. Departament Rolnictwa. Zakład Wydawnictw Statystycznych, Warszawa, 2016. Available online: 5507/3/12/1/rolnictwo_w_2015.pdf (accessed on 27.06.2017)
  • 10. CSO (CENTRAL STATISTICAL OFFICE). A griculture in 2015. Demographic yearbook of Poland. Zakład Wydawnictw Statystycznych, Warszawa, 2016. Available online: (accessed on 27.06.2017)
  • 11. DOCUMENT SANTE. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/11945/2015. 2015. Available online: (accessed on 27.06.2017)
  • 12. CLAUDIANOS C., RANSON H., JOHNSON R.M., BISWAS S., SCHULER M.A., BERENBAUM M.R., FEYEREISEN R., OAKESHOTT J.G. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15 (5), 615, 2006.
  • 13. PIECHOWICZ B., GRODZICKI P., STAWARCZYK K., PIECHOWICZ I., STAWARCZYK M., ZWOLAK A. Circadian and seasonal changes in honeybee (Apis mellifera) worker susceptibility to pyrethroids. Pol. J. Environ. Stud. 25 (3), 1177, 2016.
  • 14. PIECHOWICZ B., GRODZICKI P., STAWARCZYK M., STAWARCZYK K. Circadian and seasonal changes in honeybee (Apis mellifera) worker susceptibility to diazinon, teflubenzuron, pirimicarb, and indoxacarb. Pol. J. Environ. Stud. 22 (5), 1457, 2013.
  • 15. PIECHOWICZ B., STAWARCZYK K., STAWARCZYK M. Circadian changes in susceptibility of young honeybee workers to intoxication by pyrethroid, carbamate, organophosphorus, benzoyl urea and pyridine derivative insecticides. J. Plant. Prot. Res. 52 (2), 286, 2012.
  • 16. RINKEVICH F.D., MARGOTTA J.W., PITTMAN J.M., DANKA R.G., TARVER M.R., OTTEA J.A., HEALY K.B. Genetics, synergists, and age affect insecticide sensitivity of the honey bee, Apis mellifera. PLoS One, DOI:10.1371/journal.pone.0139841, 2015.
  • 17. HARPE J.R., HEYDEN L.C. Honey bee colony collapse disorder is possibly caused by a dietary pyrethrum deficiency. Biosci. Hypotheses. 2 (6), 439, 2009.
  • 18. PIIROINEN S., GOULSON D. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc. R. Soc. B. 283, 1, 2016.
  • 19. WILLIAMSON S.M., WRIGHT G.A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 216, 1799, 2013.
  • 20. STANLEY D.A., SMITH K.E., RAINE N.E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508, 2015. doi:10.1038/srep16508
  • 21. SÁNCHEZ-BAYO F., GOULSON D., PENNACCHIO F., NAZZI F., GOKA K., DESNEUX N. Are bee diseases linked to pesticides? – A brief review. Environ. Int. 89-90, 7, 2016.
  • 22. PETTIS J.S., VAN ENGELSDORP D., JOHNSON J., DIVELYL G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99 (2), 153, 2012.
  • 23. VIDAU C., DIOGON M., AUFAUVRE J., FONTBONNE R., VIGUES B., BRUNET J.L., TEXIER C., BIRON D.G., BLOT N., EL ALAOUI H., BELZUNCES L., DELBAC F. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One. 6 (6), e2 1550, 2011.
  • 24. ROAT T.C., DOS SANTOS-PINTO J.R., DOS SANTOS L.D., SANTOS K.S., MALASPINA O., PALMA M.S. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil. Ecotoxicology. 23 (9),1659, 2014.
  • 25. HENRY M., BÉGUIN M., REQUIER F., ROLLIN O., ODOUX J.-F., AUPINEL P., APTEL J., TCHAMITCHIAN S., DECOURTYE A. A common pesticide decreases foraging success and survival in honey bees. Science. 336 (6079), 348, 2012.
  • 26. BACANDRITSOS N., GRANATO A., BUDGE G., PAPANASTASIOU I., ROINIOTI E., CALDON M., FALCARO C., GALLINA A., MUTINELLI F. Sudden deaths colony population decline in Greek honey bee colonies. J. Invertebr. Pathol. 105 (3), 335, 2010.
  • 27. PAXTON R.J. Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? J. Apicult. Res. 49 (1), 80, 2010.
  • 28. JOHNSON R.M., ELLIS M.D., MULLIN C.A., FRAZIER M. Pesticides and honey bee toxicity – USA. Apidologie. 41, 312, 2010.
  • 29. CRESSWELL J.E., PAGE C.J., UYGUN M.B., HOLMBERGH M., LI Y., WHEELER J.G., LAYCOCK I., POOKC J., DE IBARRA N.H., SMIRNOFF N., TYLER C.R. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology (Jena) 115 (6), 365, 2012.
  • 30. GLAVAN G., BOŽIČ J. The synergy of xenobiotics in honey bee Apis mellifera: mechanisms and effects. Acta Biol. Slov. 56 (1), 11, 2013.
  • 31. THOMPSON H.M., WILKINS S. Assessment of the synergy and repellency of pyrethroid/fungicide mixtures. Bull. Insectol. 56 (1), 131, 2006.
  • 32. THOMPSON H.M. Interactions between pesticides; a review of reported effects and their implications for wildlife risk assessment. Ecotoxicology. 5 (2), 59, 1996.
  • 33. RISSATO S.R, GALHIANE M.S., DE ALMEIDA M.V., GERENUTTI M., APON B.M. Multiresidue determination of pesticides in honey samples by gas chromatography–mass spectrometry and application in environmental contamination. Food Chem. 101 (4), 1719, 2007.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.