PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |
Tytuł artykułu

Effects of depth and land cover on soil properties as indicated by carbon and nitrogen-stable isotope analysis

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate the effect of soil depths (0-30, 30-60, and 60-90 cm) and landcover changes on selected physicochemical properties in soils transformed from a secondary forest status to plantation status for the cultivation of rubber and oil palm aged 5 and 15 years. Soil physicochemical properties; bulk density (Bd), pH, soil organic matter (SOM), total organic carbon (TOC), total organic nitrogen (TON), and their corresponding isotopes; and δ13C and δ15N were determined by conventional methods. The results showed that the content of SOM (3.39%) at 0-30 cm was signifi cantly greater than those of the 30-60 and 60-90 cm depths. The same pattern was demonstrated by the content of TOC and TON. With respect to land use, the secondary forest had signifi cantly greater SOM content than the rubber and oil palm plantations aged 5 years. The same pattern was also observed for the content of TOC and TON by land use. Similarly, the δ13C value of -26.85% was greatest at the 0-30 cm depth, while by land use the oil palm aged 5 years had the greatest δ13C. Conversely, the δ15N value of 4.21% was signifi cantly greater at the 60-90 cm depth compared to the 30-60 (1.78%) and the 0-30 cm (-2.03%) depths. The negative value of δ15N revealed the sources (N was a product of multiple variables such as N fi xation, precipitation, rainstorm, and the use of chemical fertilizers), and the limited nitrogen content in the study area. In conclusion, this study demonstrated that the conversion of secondary forest to plantation enhanced the mineralization of soil organic matter and increased SOC concentrations at the sub soil. Therefore, the conversion of the secondary forest to the oil palm plantations must have resulted in a positive effect by contributing to greater soil organic carbon content.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
1
Opis fizyczny
p.1-10,fig.,ref.
Twórcy
autor
  • Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang
  • Higher Institute for Comprehensive Careers, Gheryan, Libya
  • Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang
autor
  • Environmental and Natural Resources, Faculty of Science and Technology, National University Malaysia, 43600 Bangi, Selangor
  • Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang
autor
  • Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang
  • Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang
Bibliografia
  • 1. SANDERMAN j., AMUNDSON R.G., BALDOCCHI D.D. Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time. Global Biogeochem. CY. 17 (2), 2003.
  • 2. PAUSTIAN K., LEHMANN J., OGLE S., REAY D., ROBERTSON G.P. Climate-smart soil. Nature, 532, 49, 2016.
  • 3. WICK A.F., INGRAM L.J., STAHL P.D. Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biol. Biochem. 41 (2), 201, 2009.
  • 4. LLORENTE M., BELEN TURRIÓN M. Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur. J. Forest Res. 129 (1), 73, 2010.
  • 5. ROVIRA P., VALLEJO V.R. Physical protection and biochemical quality of organic matter in Mediterranean calcareous forest soils: a density fraction approach. Soil Biol. Biochem. 35 (2), 245, 2003.
  • 6. VAN AARDENNE J.A., DENTENER F.J., OLIVIER J.G.J, KLEINGOLDEIJK C.G.M., LELIEVELD J.A. 1×1 resolution data set of historical anthropogenic trace gas emission for the period 1890-1990. Global Biogeochem. CY. 15 (4), 909, 2001.
  • 7. HOUGHTON R.A. Why are estimates of the terrestrial carbon balance so different? Global Change Biol. 9 (4), 500, 2003.
  • 8. VAN DER WERF G.R., MORTON D.C., DEFRIES R.S., OLIVER J.G.J., KASIBHATLA P.S., JACKSON R.B., COLLATZ G.J., RANDERSON J.T. CO₂ emission from forest loss. Nature Geoscience, 2, 237, 2009.
  • 9. TUBIELLO F.N. , SALVATORE M., FERRARA A.F., HOUSE J., FEDERICI S., ROSSI S., BIANCALANI R., CONDOR GOLEC R. D., JACOBS H., FLAMMINI A., PROSPERI P., CARDENAS-GALINDO P., SCHMIDHUBER J., SANZ SANCHEZ M,J., SRIVASTAVA N., SMITH P. The contribution of agriculture, forestry and other land use activities to global warming. Global Change, 21 (7), 2655, 2015.
  • 10. OGLE S.M., BREDIT F,J., PAUSTAIN K. Agricultural management impacts on soil organic carbon storage under moist and dry climate conditions of temperate and tropical regions. Biogeochemistry, 72 (1), 87, 2005.
  • 11. BUSCH J., FERRETTI-GALLON K., ENGELMANN J., WRIGHT M., AUSTIN K.G., STOLLE F., TURUBANOVA S., POTAPOV P.V., MARGONO B., HANSEN M.C., BACCINI A. Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proceeding of the National Academy of Science of the United State America, 112 (5), 1328, 2015.
  • 12. KOTOWSKA M.M., LEUSCHNER C., TRIADIATI T., MERIEM S., HERTEL D. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Global Change Biol. 21 (10), 3620, 2015.
  • 13. FRÃZAO L.A., PAUSTIAN K., PELLEGRINO CERRI C.E., CERRI C.C. Soil carbon stocks and changes after oil palm introduction in the Brazilian Amazon. Global Biol. Bioen. 5 (4), 384, 2013.
  • 14. FLYNN H.C., CANALS L. M., KELLER E., KING H., SIM S., HASTINGS A., WANG S. SMITH P. Quantifying global greenhouse gas emission from land-use change for crop production. Global Change Biol. 18 (5), 1622, 2012.
  • 15. KHASANAH N., VAN NOORDWIJK M., NINGSIH H., RAHAYU S. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agr. Ecosyst. Environ. 211, 195, 2015
  • 16. BOUTTON T.W., ARCHER S.R., MIDWOOD A.J., ZIZER S.F., BOL R. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma, 82 (1), 5, 1998.
  • 17. BERNOUX M., CERRI C.C., NEILL C., DE MORAES J.F.L. The use of stable carbon isotope for estimating soil organic matter turnover rates. Geoderma, 82 (1), 43, 1998.
  • 18. BUSARI M., SALAKO F., TUNIZ C. Stable isotope technique in the elevation of tillage and fertilizer effects on soil carbon and nitrogen sequestration and water use efficiency. Eur. J. Agron. 73, 98, 2016.
  • 19. DE ROUW A., SOULILEUTH B., HUON S. Stable carbon ratios in soil and vegetation shift with cultivation practices (North Laos). Agr. Ecosyst. Environ. 200, 161, 2015.
  • 20. NATELHOFFER K.J., FRY B. Controls on natural nitrogen-15 and carbon -13 abundances in forest soil organic matter. Soil Sci. Soc. Am. J. 52 (6). 1633, 1988.
  • 21. ZHANG K., DANG H., ZHANG Q., CHENG X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Global Change Biol. 21 (7), 2762, 2015.
  • 22. BALESDENT J., MARIOTTI A. Measurement of soil organic matter turnover using 13C natural abundance, pp. 83-111 in T W BOUTTON and S. I. YAMASAKA, editors. Mass spectrometry of soils. Marcel Dekker, New York, New York, USA. 1996.
  • 23. ZHU X., CHEN H., ZHANG W., HUANG J., FU S., LIU Z., MO J. Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species. Plant Soil, 399 (1), 61, 2016.
  • 24. PICCOLO M.C., NEILL C., MELILLO J.M., CERRI C.C., STEUDLER P.A. 15 N natural abundance in forest and pasture soils in the Brazilian amazon Basin. Plant Soil, 182 (2), 249, 1996.
  • 25. TANAKA-ODA A., KENZO T., INOUE Y., YANO M., KOBA K., ICHIE T. Variation in leaf and soil δ15N in diverse tree species in a lowland dipterocarp rainforest, Malaysia. Trees, 30 (2), 509, 2016.
  • 26. SOMMER J., DIPPOLD M.A., FLESSA H., KUZYKOV Y. Allocation and dynamics of C and N within plant-soil system of ash and beech. J. Plant Nutr. Soil Sci. 179 (3), 376, 2016.
  • 27. JOBBẢGY E.G., JACKSON R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10 (2), 423, 2000.
  • 28. DAVIDSON E.A., JANSSENS I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165, 2006.
  • 29. PERVEEN N., BAROT S., ALVAREZ G., KLUMOO K., MARTIN R. Priming effect and microbial diversity in ecosystem functioning and response to global change: a modelling approach using the SYMPHONY model. Global Change Biol. 20 (4), 1174, 2014.
  • 30. PARAMANANTHAN S. Keys to the identification of Malaysian soils using parent martials, 2rd Edn Param Agricultural Soil Surveys (M) Sdn. BHD Malaysia, 2, 2012.
  • 31. FAO-UNESCO Soil map of the world. Revised legend. World Resources Report 60. FAO, Rome.1988.
  • 32. MILLER W., MILLER D. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 18 (1). 1987.
  • 33. HEIRI O., LOTTER A.F., LEMCKE G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25 (1), 101, 2001.
  • 34. ZULKIFLI S.Z., MOHAMAT-YUSUFF F., MUKHTAR A., ISMAIL A., MIYAZAK N. Determination of food web in intertidal mudflat of tropical mangrove ecosystem using stable isotope markers: A preliminary study. Life Sci. J.11 (3), 427, 2014.
  • 35. SANAULLAH A.F.M., AKHTARUZZAMAN M., UDDIN M. Effect of Topography and Soil Depth on Clay Content, Organic Matter Content, Active Acidity, Reserve Acidity and Cation Exchange Capacity of Some Tea Soils of Bangladesh. J. Sci. Res. 8 (2), 229, 2016.
  • 36. YAO M.K., ANGUI P.K.T., KONATÉ S., TONDOH J.E., TANO Y. Effects of land use types on soil organic carbon and nitrogen dynamics in Mid-West Cote d’Ivoire. Eur. J. Sci. Res. 40 (2), 211, 2010.
  • 37. BATJES N. H., DIJKSHOORN J.A. Carbon and nitrogen stocks in the soils of the Amazon Region. Geoderma, 89 (3), 273, 1999.
  • 38. KIZILKAYA R., DENGIZ O. Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity. Zemdirbyste-Agriculture, 97 (2), 15, 2010.
  • 39. TANAKA S., TACHIBE S., WASLI M.E.B., LAT J., SEMAN L., KENDAWANG J. J., IWASAK K., SAKURAI K. Soil characteristics under cash crop farming in upland areas of Sarawak, Malaysia. Agr. Ecosyst. Environ. 129 (1-3), 293, 2009.
  • 40. TWENEBOAH K.C. Modern Agriculture in the Tropics with Special Reference to West Africa. Cash Crops, CO-Wood Publishers, Accra- 278, 2000.
  • 41. CH’NGHUCK Y., AHMED O.H., NIK MUHAMAD A.M., JALLOH M.B. Effects of converting secondary forest on peat to oil palm plantation on carbon sequestration. Am. J. Agr. Biol. Sci. 4 (2), 123, 2009.
  • 42. ALLEN K., CORRE M.D., KURNIAWAN S., UTAMI S.R.,VELDKAMP E. Spatial variability surpasses land-use change effects on soil biochemical properties of converted lowland landscapes in Sumatra, Indonesia. Geoderma, 284, 42, 2016.
  • 43. GANDASECA S., SALIMIN M.L., AHMED O.H. Effect of cultivation in different age’s oil palm plantation on selected chemical properties of peat swamp soils. Agriculture, Forestry and Fisheries, 3 (6-1), 6, 2014.
  • 44. STRAATEN O.V., CORRE M.D., WOLF K., TCHIENKOUA M., CUELLAR E., MATTHEWS R.B., VELDKAMP E. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Nation. Acad. Sci., 112 (32), 9956, 2015.
  • 45. COMTE I., COLIN F., GRUNBERGER O., FOLLIAN S., WHALEN J.K., CALIMAN P. Landscape-scale assessment of soil response to long-term organic and mineral fertilizer application in an industrial oil palm plantation, Indonesia. Agr. Ecosys. Environ. 169. 58, 2013.
  • 46. AMUNDSON R. The carbon budget in soils. Ann. Rev. Earth and Pl. Sci. 29 (1), 535, 2001.
  • 47. KURNIAWAN S., CORRE M.D., MATSON A.L. Conversion of lowland forests to oil palm and rubber plantations impacts nutrient leaching losses and nutrient retention effi ciency in highly weathered soils in Sumatra, Indonesia. 2016.
  • 48. HARON K., BROOKES P.C., ANDERSON J.M., ZAKARIA Z.Z. Microbial biomass and soil organic matter dynamics in oil palm (Elaeis guineensis Jacq.) plantations, West Malaysia. Soil Biol. Biochem. 30 (5), 547, 1998.
  • 49. SLAMET B., SURATI JAYA I.N., HENDRAYANTO., TARIGAN S.D. Impact of Land Cover Changes in Tropical Lowland Rainforest Transformation System to Soil Properties. IJSBAR, 22 (2), 316, 2015.
  • 50. HASSAN M.N.A., JARAMILLO P., GRIFFIN W.M. Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector’s energy security. Energ. Policy, 39 (5), 2615, 2011.
  • 51. GUILLAUME T., DAMRIS M., KUZYAKOV Y. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Global Change Biolo. 21 (9), 3548, 2015.
  • 52. GEORGE N., KILLUR R.R.B., CORNELIO D.L. Land use conversion and soil properties in a lowland tropical landscape of Papua New Guinea. Jurnal Manajement Hutan Tropika, 19 (1), 39, 2013.
  • 53. COOK R.L., BINKLEY D., MENDES J.C.T., STAPE J.L. Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. Forest Ecol. Manag. 324, 37, 2014.
  • 54. POWERS J.S., CORRE M.D., TWINE T.E., VELDKAMP E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Natil. Acad. Sci. 108 (15), 3618, 2011.
  • 55. GUNINA A., KUZYAKOV Y. Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13 C natural abundance. Soil Biol. Biochem. 71, 95, 2014.
  • 56. ROUTH J., BIANCHI T.S., HUTCHINGS J. A., KUHRY P., RANJAN R. K. Organic carbon characteristics in Swedish forest soil trace post-depositional carbon dynamics. Eur. J. Soil Sci. 67 (4), 492, 2016.
  • 57. ADACHI M., BEKKU Y.S., RASHIDAH W., OKUDA T., KOIZUMI H. Differences in soil respiration between different tropical ecosystems. Appl. Soil Ecol. 34 (2-3), 258, 2006.
  • 58. GEISSEN V., SÄNCHEZ-HERNÄNDEZ R., KAMPICHLER C., RAMOS-REYES R., SEPULVEDA-LOZADA A., OCHOA-GOANA S., DE JONG B.H.J., HUERTA-LWANGA E., HERNANDEZ-DAUMAS S. Effects of land-use change on some properties of tropical soils-an example from Southeast Mexico. Geoderma, 151 (2), 87, 2009.
  • 59. POWERS J.S. Changes in soil carbon and nitrogen after contrasting land-use transitions in Northeastern Costa Rica. Ecosystems, 7 (2), 134, 2004.
  • 60. DAVIDSON E.A., DE CARVALHO C.J.R., FIGUEIRA A.M., ISHIDA F.Y., OMETTO J. P. H. B., NARDOTO G. B., SABA R. T., HAYASHI S. N., LEAL E. C., VIEIRA I. C. G., MARTINELLI L. A. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 447, 995, 2007.
  • 61. WILTS A.R., REICOSKY D.C., ALLMARAS R.R., CLAPP E.C. Long-term corn residue effects. Soil Sci. Soc. Am. J. 68 (4), 1342, 2004.
  • 62. HAVLIN J.L., BEATON J.D., NELSON W.L., TISDALE S.L. Soil fertility and fertilizers: An introduction to nutrient management 515. Pearson Prentice Hall Upper Saddle River, NJ. 2005.
  • 63. DESROCHERS A., VAN DEN DRIESSCHE R., THOMAS B.R. NPK fertilization at planting of three hybrid poplar clones in the boreal region of Alberta. Forest Ecol. Manag. 232 (1), 216, 2006.
  • 64. DESROCHERS A., VAN DEN DRIESSCHE R., THOMAS B.R. The interaction between nitrogen source, soil pH, and drought in the growth and physiology of three poplar clones This article is one of a selection of papers published in the Special Issue on Poplar Research in Canada. Botany, 85 (11), 1046, 2007.
  • 65. VITORELLO V.A., CERRI C.C., VICTÒRIA R.L., ANDREUX F., FELLER C. Organic matter and natural carbon-13 distribution in forested and cultivated oxisols. Am. J. Soil Sci. Soc. 53 (3), 773, 1989.
  • 66. SZPAK P. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 5, 1, 2014.
  • 67. YONEYAMA T., BOUTTON T., YAMASAKI S. Characterization of natural 15N abundance of soils. Mass Spectrom. Soils. 1996.
  • 68. CHOI W., RO H., HOBBIE E.A. Patterns of natural 15 N in soils and plants from chemically and organically fertilized uplands. Soil Biol. Biochem. 35(11), 1493, 2003.
  • 69. SHEARER G., KOHL D.H., CHIEN S. The nitrogen-15 abundance in a wide variety of soils. Soil Sci. Soc. Am. J. 42 (6), 899, 1978.
  • 70. CHEN R., HU J., DITTERT K., WANG J., ZHANG J., LIN X . Soil total nitrogen and natural 15Nitrogen in response to long-term fertilizer management of a maize-wheat cropping system in Northern China. Commun. Soil Sci. Plant Anal. 42 (3), 322, 2011.
  • 71. MAYOR J.R., WRIGHT S.J., SCHUUR E.A.G., BROOKS M.E., TURNER B.L. Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest. Biogeochemistry, 119 (1-3), 293, 2014.
  • 72. BANABAS M. Study of Nitrogen Loss Pathways in Oil Palm (Elaeis Guineensis Jacq.) Growing Agro-ecosystems on Volcanic Ash Soils in Papua New Guinea: A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand. 2007, Massey University, Palmerston North.
  • 73. GOH K. J., HÄRDTER R., FAIRHURST T.H. The Oil Palm- Management for Large and Sustainable Yields (in press). In FAIRHURST, T.H and HARDTER R.,eds. Singapore: Potash & Phosphate Institute of Canada. 2003.
  • 74. NADELHOFFER K.J., FRY B. Nitrogen isotope studies in forest ecosystems.In: Lajtha K, Minchener RH (eds) Stable Isotopes in Ecology and Environmental Science. Boston, MA, USA: Blackwell Scientific Puplications. 23 , 1994.
  • 75. BRUNN M., CONDRON L., WELLS A., SPIELVOGEL S., OELMANN Y. Vertical distribution of carbon and nitrogen stable isotope ratios in topsoils across a temperate rainforest dune chronosequence in New Zealand. Biogeochemistry, 129 (1), 37, 2016.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-b51e2957-9729-49c9-9a49-a7ca2765c0c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.