PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 6 |

Tytuł artykułu

Evaluation of chlorophyll fluorescence in different densities of spring barley

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Over the period 2008–2009, field experiments were carried out at the Lithuanian Institute of Agriculture on an Endocalcari-Epihypogleyic Cambisol (CMg-p-w-can). The study was aimed to establish the effects of spring barley crop stand density on the chlorophyll fluorescence and to estimate the relationship between grain yield and chlorophyll fluorescence value. The tests involved three spring barley varieties—Aura DS, Barke and Gustav. The three different stand densities were formed with seed rates of two, four and six million viable seeds per hectare. Our research findings indicated that increasing spring barley stand density did not exert any negative influence on major photosynthetic processes and did not result in any significant qualitative changes in light harvesting system. A significant varietal (factor B) influence was established on minimum fluorescence (Fo) and maximum fluorescence (Fm) values after short dark adaptation indicators (Ffact. = 19.66** and Ffact. = 9.33**, respectively). Growth stage (factor C) significantly influenced all fluorescence indicators— Fo, Fm and quantum efficiency of PSII after short dark adaptation (Fv/Fm)—in the five cases of the six tested. A significant effect of variety and growth stage interaction (B × C) was determined for 66.7% of the tested cases. The article presents a correlation between the grain yield of spring barley and fluorescence parameters. In most cases, the correlation was strong and significant. The interaction between the fluorescence parameters for individual varieties was responsible for 53.8–76.2% of grain yield data variation, which averaged over all varieties, amounted to 21.9–46.1%.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

6

Opis fizyczny

p.2159-2167,fig.,ref.

Twórcy

  • Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Kedainiai district LT-58344, Lithuania
  • Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Kedainiai district LT-58344, Lithuania
  • Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Kedainiai district LT-58344, Lithuania

Bibliografia

  • Anda A, Løke Z (2005) Radiation balance components of maize hybrids grown at various plant densities. J Agron Crop Sci 191:202–209
  • Baker NR, Rosenqvist E (2004) Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. doi:10.1093/jxb/erh196
  • Balčiūnas M, Jankauskienė Z, Brazaitytė A, Duchovskis P (2008) The effect of plant stand density on flax leaf area index and content of photosynthetic pigments [summary]. Žemdirbystė = Agriculture 95:97–109 (in Lithuanian)
  • Balouchi HR, Sanavy SAMM, Emam Y, Dolatabadian A (2009) UV radiation, elevated CO₂ and water stress effect on growth and photosynthetic characteristics in durum wheat. Plant Soil Environ 55:443–453
  • Chen J, Liang Y, Hu X, Wang X, Tan F, Zhang H, Ren Z, Luo P (2010) Physiological characterization of ‘stay green’ wheat cultivars during grain filling stage under field growing conditions. Acta Physiol Plant 32:875–882. doi:10.1007/s11738-010-0475-0
  • Christen D, Schönmann S, Jermini M, Strasser RJ, Defago G (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514. doi:10.1016/j.envexpbot.2007.02.003
  • Del Pozo A, Dennett MD (1999) Analysis of the distribution of light, leaf nitrogen, and photosynthesis within the canopy of Vica faba L. at two contrasting plant densities. Aust J Agr Res 50:183–189
  • Doncheva S, Stoyanova Z, Georgieva K, Nedeva D, Dikova R, Zehiroz G, Nikolova A (2006) Exogenous succinate increases resistance of maize plants to copper stress. J Plant Nutr Soil Sci 169:247–254. doi:10.1002/jpln.200520560
  • Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533–1540
  • Gutierrez D, Gutierrez E, Perez P, Morcuende R, Verdejo AL, Martinez-Carrasco R (2009) Acclimation to future atmospheric CO₂ levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. Physiol Plantarum 137:86–100. doi:10.1111/j. 1399-3054.2009.01256.x
  • Hura T, Grzesiak S, Hura K, Thiemt E, Tokarz K, We˛dzony M (2007) Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Ann Botany 100:767–775. doi:10.1093/aob/mcm162
  • Hura T, Hura K, Grzesiak S (2009) Physiological and biochemical parameters for identification of QTLs controlling the winter triticale drought tolerance at the seedling stage. Plant Physiol Biochem 47:210–214. doi:10.1016/j.plaphy.2008.11.004
  • Hura T, Hura K, Grzesiak M (2010) Soil drought applied during the vegetative growth of triticale modifies the physiological and biochemical adaptation to drought during the generative development. J Agron Crop Sci. doi:10.1111/j.1439-037X.2010. 00450.x
  • Inamullah, Isoda A (2005) Adaptive responses of soybean and cotton to water stress. II. Changes in CO₂ assimilation rate, chlorophyll fluorescence and photochemical reflectance index in relation to leaf temperature. Plant Prod Sci 8:131–138
  • Janušauskaitė D, Auškalnienė O, Pšibišauskienė G (2009) Chlorophyll index of spring barley foliage and its relationship with the yield in the stand of different densities [summary]. Žemdirbystė = Agriculture 96:124–138 (in Lithuanian)
  • Li R, Guo P, Baum M, Grando S, Ceccarelli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agr Sci China 5:751–757
  • Lu C, Zhang J (1999) Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot 50:1199–1206
  • Mamnouie E, Fotouhi Ghazvini R, Esfahany M, Nakhoda B (2006) The effects of water deficit on crop yield and the physiological characteristics of barley (Hordeum vulgare L.) varieties. J Agr Sci Tech 8:211–219
  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507. doi:10.1093/jxb/erq199
  • Oukarroum A, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446. doi:10.1016/j.Envexpbot.2007.01.002
  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant 137:188–199. doi:10.1111/j.1399-3054.2009.01273.x
  • Ouzounidou G, Papadapoulou P, Giannakoula A, Ilias I (2008) Plant growth regulators treatments modulate growth, physiology and quality characteristics of Cucumis melo L. plants. Pakistan J Bot 40:1185–1193
  • Paknejad F, Nasri M, Moghadam H, Zahedi H, Alahmadi MJ (2007) Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. J Biol Sci 7:841–847
  • Ritchie GA (2006) Chlorophyll fluorescence: what is it and what do the numbers mean? USDA For Serv Proc RMRS 43:34–43
  • Sarieva GE, Kenzhebaeva SS, Lichtenthaler HK (2010) Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions. Russ J Plant Physiol 57:28–36. doi:10.1134/S1021443710010048
  • Shangguan ZP, Shao MA, Dyckmans J (2000) Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J Plant Physiol 156:46–51
  • Strauss AJ, Krüger GHJ, Strasser RJ, Heerden PDR (2007) The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance. Physiol Plantarum 131:89–105. doi:10.1111/j.1399-3054.2007.00930.x
  • Sui N, Li M, Meng Q, Tian J, Zhao S (2010) Photosynthetic characteristics of a super high yield cultivar of winter wheat during late growth period. Agr Sci China 9:346–354. doi: 10.1016/S1671-2927(09)60103-6
  • Tahir ISA, Nakata N, Yamaguchi T, Nakano J, Ali AM (2009) Physiological response of three wheat cultivars to high shoot and root temperatures during early growth stages. Plant Prod Sci 12:409–419
  • Zivcak M, Brestic M, Olsovska K (2009) Application of chlorophyll fluorescence for screening wheat (Triticum aestivum L.) genotype susceptibility to drought and high temperature. Vagos 82:82–87
  • Živčak M, Brestič M, Olšovska K, Slamka P (2008) Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ 54:133–139

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b4b9d3e5-b386-4e83-8b00-2bb6f10a1389
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.