PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 3 |

Tytuł artykułu

Role of SAP7-10 and morphological regulators (EFG1, CPH1) in Candida albicans’ hypha formation and adhesion to colorectal carcinoma Caco-2

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Secreted aspartic proteases (Saps) are considered as key virulence factors of Candida albicans. Hopefully our outlook will widen the knowledge of SAP7’s role in C. albicans pathogenesis. The goal of our study was to investigate SAP7 expression during C. albicans adhesion to intestinal human cells. Another objective was to study the role of SAP8-10 and transcriptional regulators: EFG1 and CPH1, using the mutants: Δsap, Δefg1, Δcph1 during growth on Caco-2 monolayer. SAP7 expression was analyzed using real time RT-PCR; relative quantification was normalized against ACT1 in cells after growth on Caco-2. Adherence assay of C. albicans to Caco-2 was performed in a 24-well-plate. The results proved that SAP7 can play a role during the initial adaptation of C. albicans to intestinal tract and decreases over time. Up-regulation of SAP7 occured in the absence of SAP8 and SAP10 (genetic alternations dependence). SAP7 can be regulated by the morphogensis’ regulators during C. albicans growth on epithelium. Adhesion of the mutants was indistinguishable from SC5314. The lack of neither SAP8-10 nor EFG1/CPH1 influences the adhesive behaviour of C. albicans. Deletion of SAP8-10 resulted in no filamentation defects. The results help better understand the role of SAP7 during adhesion and morphogenesis in C. albicans.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.203-210,fig.,ref.

Twórcy

  • Independent Laboratory of Streptomyces and Fungi Imperfecti, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
autor
  • National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
autor
  • Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
autor
  • Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland

Bibliografia

  • Albrecht A., A. Felk, I. Pichova, J.R. Naglik, M. Schaller, P. de Groot, D. MacCallum, F.C. Odds, W. Schafer, F. Klis and others. 2006. Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J. Biol. Chem. 281: 688–694.
  • Amberg D., D. Burke and J. Strathern. 2005. Yeast RNA isolations, Techniques and Protocols #6, pp. 127–131. In: Amberg D., D. Burke and J. Strathern (eds). Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  • Aoki W., N. Kitahara, N. Miura, H. Morisaka, Y. Yamamoto, K. Kuroda and M. Ueda. 2011. Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. J. Biochem. 150: 431–438.
  • Bertini A., F. De Bernardis, L.A. Hensgens, S. Sandini, S. Senesi and A. Tavanti. 2013. Comparison of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis adhesive properties and pathogenicity. Int. J. Med. Microbiol. 303: 98–103.
  • Bocheńska O., M. Rapala-Kozik, N. Wolak, G. Bras, A. Kozik, A. Dubin, W. Aoki, M. Ueda and P. Mak. 2013. Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin. Peptides 48: 49–58.
  • Braga-Silva L.A. and A.L. Santos. 2011. Aspartic protease inhibitors as potential anti-Candida albicans drugs: impacts on fungal biology, virulence and pathogenesis. Curr. Med. Chem. 18: 2401–2419.
  • Brand A. 2012. Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence. Int. J. Microbiol. 2012:517529.
  • Cadicamo C.D., J. Mortier, G. Wolber, M. Hell, I.E. Heinrich, D. Michel, L. Semlin, U. Berger, H.C. Korting, H.D. Holtje and others. 2013. Design, synthesis, inhibition studies, and molecular modeling of pepstatin analogues addressing different secreted aspartic proteinases of Candida albicans. Biochem. Pharmacol. 85: 881–887.
  • Cassone A. and R. Cauda. 2012. Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. Aids 26: 1457–1472.
  • Correia A., U. Lermann, L. Teixeira, F. Cerca, S. Botelho, R.M. da Costa, P. Sampaio, F. Gartner, J. Morschhauser, M. Vilanova and others. 2010. Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect. Immun. 78: 4839–4849.
  • Dalle F., B. Wachtler, C. L’Ollivier, G. Holland, N. Bannert, D. Wilson, C. Labruere, A. Bonnin and B. Hube. 2010. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 12: 248–271.
  • Fonzi W.A. and M.Y. Irwin. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717–728.
  • Gillum A.M., E.Y. Tsay and D.R. Kirsch. 1984. Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S.cerevisiae ura3 and E.coli pyrF mutations. Mol. Gen. Genet. 198: 179–182.
  • Han T.L., R.D. Cannon and S.G. Villas-Boas. 2011. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet. Biol. 48: 747–763.
  • Hashash R., S. Younes, W. Bahnan, J. El Koussa, K. Maalouf, H.I. Dimassi and R.A. Khalaf. 2011. Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation. Mycoses 54: 491–500.
  • Jackson B.E., K.R. Wilhelmus and B. Hube. 2007. The role of secreted aspartyl proteinases in Candida albicans keratitis. Invest. Ophthalmol. Vis. Sci. 48: 3559–3565.
  • Lermann U. and J. Morschhäuser. 2008. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology 154: 3281–3295.
  • Liu H., J. Köhler and G.R. Fink. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266: 1723–1726.
  • Livak K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.
  • Lo H.J., J.R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti and G.R. Fink. 1997. Non filamentous C. albicans mutants are avirulent. Cell 90: 939–949.
  • Martin R., B. Wachtler, M. Schaller, D. Wilson and B. Hube. 2011. Host-pathogen interactions and virulence-associated genes during Candida albicans oral infections. Int. J. Med. Microbiol. 301: 417–422.
  • Mayer F.L., D. Wilson and B. Hube. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119–128.
  • Moazeni M., M.R. Khoramizadeh, P. Kordbacheh, Z. Sepehrizadeh, H. Zeraati, F. Noorbakhsh, L. Teimoori-Toolabi and S. Rezaie. 2012. RNA-mediated gene silencing in Candida albicans: inhibition of hyphae formation by use of RNAi technology. Mycopathologia 174: 177–185.
  • Naglik J.R., S.J. Challacombe and B. Hube. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67: 400–428.
  • Naglik J.R., D. Moyes, J. Makwana, P. Kanzaria, E. Tsichlaki, G. Weindl, A.R. Tappuni, C.A. Rodgers, A.J. Woodman, S.J. Challacombe and others. 2008. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154: 3266–3280.
  • Naglik J.R., D.L. Moyes, B. Wachtler and B. Hube. 2011. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 13: 963–976.
  • Ness F., V. Prouzet-Mauleon, A. Vieillemard, F. Lefebvre, T. Noel, M. Crouzet, F. Doignon and D. Thoraval. 2010. The Candida albicans Rgd1 is a RhoGAP protein involved in the control of filamentous growth. Fungal Genet. Biol. 47: 1001–1011.
  • Nobile C.J., E.P. Fox, J.E. Nett, T.R. Sorrells, Q.M. Mitrovich, A.D. Hernday, B.B. Tuch, D.R. Andes and A.D. Johnson. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148: 126–138.
  • Pierce J.V. and C.A. Kumamoto. 2012. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. mBio 3: e00117-00112.
  • Pietrella D., N. Pandey, E. Gabrielli, E. Pericolini, S. Perito, L. Kasper, F. Bistoni, A. Cassone, B. Hube and A. Vecchiarelli. 2013. Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. Eur. J. Immunol. 43: 679–692.
  • Puri S., R. Kumar, S. Chadha, S. Tati, H. Conti, B. Hube, P. Cullen and M. Edgerton. 2012. Secreted Aspartic Protease Cleavage of Candida albicans Msb2 Activates Cek1 MAPK Signaling Affecting Biofilm Formation and Oropharyngeal Candidiasis. PLoS ONE 7: e46020.
  • Schild L., A. Heyken, P.W. de Groot, E. Hiller, M. Mock, C. de Koster, U. Horn, S. Rupp and B. Hube. 2011. Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot. Cell 10: 98–109.
  • Seabra C.L., C.M. Botelho, M. Henriques and R. Oliveira. 2013. Differential adherence and expression of virulence traits by Candida albicans and Candida parapsilosis in mono- and dual-species cultures in arti icial saliva. Mycopathologia 176: 33–40.
  • Staniszewska M. 2009. Ph.D. Thesis, Search for Candida albicans virulence factors. Independent Laboratory of Streptomyces and Fungi Imperfecti. National Institute of Public Health-National Institute of Hygiene. Warsaw. Poland.
  • Staniszewska M., M. Bondaryk, K. Siennicka and W. Kurzatkowski. 2012. Ultrastructure of Candida albicans Pleomorphic Forms: Phase-Contrast Microscopy, Scanning and Transmission Electron Microscopy. Pol. J. Microbiol. 61: 129–135.
  • Staniszewska M., M. Bondaryk, E. Swoboda-Kopeć, K. Siennicka, G. Sygitowicz and W. Kurzątkowski. 2013. Candida albicans morphologies revealed by scanning electron microscopy analysis. Braz. J. Microbiol. 44: 813–821.
  • Staniszewska M., M. Bondaryk, T. Malewski and W. Kurzatkowski. 2014. Quantitative expression of Candida albicans aspartyl proteinase genes SAP7, SAP8, SAP9, SAP10 in Human Serum in vitro. Pol. J. Microbiol. 63: 15–20.
  • Staniszewska M., Bondaryk M., Malewski T. and Schaller M. 2014. The expression of the Candida albicans gene SAP4 during hyphal formation in human serum and in adhesion to monolayer cell culture of colorectal carcinoma Caco-2 (ATCC). Centr. Eur. J. Biol. 9: 796–810.
  • Taylor B.N., P. Staib, A. Binder, A. Biesemeier, M. Sehnal, M. Rollinghoff, J. Morschhauser and K. Schroppel. 2005. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect. Immun. 73: 1828–1835.
  • Tsai P.W., Y.T. Chen, P.C. Hsu and C.Y. Lan. 2013. Study of Candida albicans and its interactions with the host: A mini review. BioMedicine 3: 51–64.
  • Yan L., C. Yang and J. Tang. 2013. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol. Res. 168: 389–395.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b4a42a41-43eb-4646-99c6-da4efccf5d8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.