PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |

Tytuł artykułu

Oyster shell as a low-cost adsorbent for removing heavy metal ions from wastewater

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Oyster shell powder is a potential adsorbent material that can be used to control pollution in groundwater. The current research objective is to evaluate the heavy metal ion adsorption properties by oyster shell powder in an aqueous solution. Three kinds of heavy metals (copper, cadmium, and lead) were adsorbed using oyster shell powder from aqueous solution. The effects of different temperatures, contact times, pH values, and initial concentrations were examined in order to optimize the conditions used for heavy metal decontamination. Cadmium and copper adsorption behaviours were suitable for modelling by the Langmuir isotherm, and lead adsorption behaviour was best modelled by the Freundlich isotherm. Adsorption situations fitted a pseudo second-order kinetic model. Intraparticular diffusion of heavy metal ions by oyster shell powder could be divided into two stages: rapid diffusion first, followed by a stable second stage. The maximum adsorption amount was ranked in an ascending order as that to copper, cadmium, and then lead for both single and competitive systems. The adsorption capacities of copper, cadmium, and lead ions by oyster shell powder were lower in a competitive system than in a single system, indicating that competitive adsorption could occur.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.2949-2959,fig.,ref.

Twórcy

autor
  • Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
autor
  • College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan, China
autor
  • Coastal Disaster Prevention Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
autor
  • Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea

Bibliografia

  • 1. HU B., JIA X., HU J., XU D., XIA F., LI Y. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the yangtze river delta, China. International Journal of Environmental Research & Public Health, 14 (9), 1, 2017.
  • 2. MEUNIER N., DROGUI P., MONTANÉ C., HAUSLER R., MERCIER G., BLAIS J.F. Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials, 137 (1), 581, 2006.
  • 3. MOON D.H., PARK J.W., KOUTSOSPYROS A., CHEONG K.H., CHANG Y.Y., BAEK K., JO R., PARK J.H. Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions. Environmental Earth Sciences, 75 (10), 884, 2016.
  • 4. FU F., WANG Q. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92 (3), 407, 2011.
  • 5. AI P.L., ARIS A.Z. A review on economically adsorbents on heavy metals removal in water and wastewater. Reviews in Environmental Science & Bio/technology, 13 (2), 163, 2014.
  • 6. BISHT R., AGARWAL M., SINGH K. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse & Desalination, 8 (1), 104, 2016.
  • 7. KANG A.J., BAGHDADI M., PARDAKHTI A. Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite. Desalination & Water Treatment, 57 (40), 18782, 2016.
  • 8. CHOWDHURY S., MAZUMDER M.A.J., AL-ATTAS O., HUSAIN T. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Science of The Total Environment, 569-770 (1), 476, 2016.
  • 9. BHATNAGAR A., HOGLAND W., MARQUES M., SILLANPÄÄ M. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219 (3), 499, 2013.
  • 10. PARE S., PERSSON I., GUAL B., LUNDBERG D., ZERBO L., KAM S., TRAORE K. Heavy metal removal from aqueous solutions by sorption using natural clays from Burkina Faso, African Journal of Biotechnology, 11 (45), 10395, 2012.
  • 11. TRIPATHI A., RANJAN M.R. Heavy metal removal from wastewater using low cost adsorbents. Journal of Bioremediation & Biodegradation, 6 (6), 315, 2015.
  • 12. HARJA M., BUEMA G., SUTIMAN D.M., CRETESCUI I. Removal of heavy metal ions from aqueous solutionsusing low-cost sorbents obtained from ash. Chemical Papers, 67 (5), 497, 2013.
  • 13. JEONG S.H., LIM J.E., SANG S.L., CHANG Y.Y., MOON D.H., YONG S.O. Evaluation on remediation efficiency on acid-spilled soil using oyster shell and biochar. Journal of Agricultural, Life and Environmental Sciences, 25 (2), 10, 2013.
  • 14. YOON G.L., KIM B.T., KIM B.O., HAN S.H. Chemical mechanical characteristics of crushed oyster-shell. Waste Management, 23 (9), 825, 2003.
  • 15. YONGSIK O., SANGEUN O., AHMAD M., LEE S.S. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, 61 (6), 1301, 2010.
  • 16. LEE C.W., KWON H.B., JEON H.P., KOOPMAN B. A new recycling material for removing phosphorus from water. Journal of Cleaner Production, 17 (7), 683, 2009.
  • 17. LEE H.H., KIM S.Y., OWENS V.N., PARK, S., KIM, J., HONG, C.O. How does oyster shell immobilize cadmium?. Archives of Environmental Contamination and Toxiology, 74 (1), 114, 2018.
  • 18. WU Q., CHEN J., CLARK M., YU, Y. Adsorption of copper to different biogenic oyster shell structures. Applied Surface Science, 311 (9), 264-272, 2014.
  • 19. JEON D.Y., LEE K.S., SHIN H.M., OH K.J. Adsorption characteristics of heavy metals for waste sludge and oyster shell. Journal of Environmental Science International, The Korean Environmental Sciences Society, 15 (11), 1053, 2006.
  • 20. ALIDOUST D., KAWAHIGASHI M., YOSHIZAWA S., SUMIDA H., WATANABE M. Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. Journal of Environmental Management, 150 (1), 103, 2015.
  • 21. GAO Y.J. Removal of heavy metals from synthetic landfill leachate using oyster shells adsorbent. Asian Journal of Chemistry, 25 (15), 8533, 2013.
  • 22. HADI S., HASTUTI B., SETIAWATI N.T. Application of oyster (anadara inflata) shell chitosan as adsorbent for heavy metal Cu(ii) ion. Applied Mechanics & Materials, 798, 390, 2015.
  • 23. GAO Y., HUANG R., YAN J., WANG D. Study on adsorbing heavy metals using oyster shell. Shandong Chemical Industry, 44 (3), 153 2015.
  • 24. HSU T.C. Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. Journal of Hazardous Materials, 171 (1/3), 995, 2009.
  • 25. YONG S.O., LIM J.E., MOON D.H. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry & Health, Springer, 33 (1), 83, 2011.
  • 26. KILIÇ M., KIRBIYIK Ç., ÇEPELIOĞULLAR Ö., PÜTÜN A.E. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, Elsevier, 283 (14), 856, 2013.
  • 27. TAN K.L., HAMEED B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74 (1), 25, 2017.
  • 28. TEIMOURI A., ESMAEILI H., FOROUTAN R., RAMAVANDI B. Adsorptive performance of calcined cardita bicolor, for attenuating Hg(ii) and As(iii) from synthetic and real wastewaters. Korean Journal of Chemical Engineering, 35 (2), 479, 2018.
  • 29. WANG L., LIU R.Q., HU Y.H., SUN W. pH effects on adsorption behavior and self-aggregation of dodecylamine at muscovite/aqueous interfaces. Journal of Molecular Graphics and Modelling, 67 (1), 62, 2016.
  • 30. LUKMAN S., ESSA M.H., MU’AZU N.D., BUKHARI A., BASHEER C. Adsorption and desorption of heavy metals onto natural clay material: influence of initial pH. Journal of Environmental Science and Technology, 6 (1), 1, 2013.
  • 31. DEVI P., SAROHA A.K. Utilization of sludge based adsorbents for the removal of various pollutants: a review. Science of the Total Environment, 578 (1), 16, 2017.
  • 32. USMAN A.R.A., SALLAM A.S., AL-OMRAN A., EI-NAGGAR A.H., ALENAZI, K.K.H., NADEEM M., AL-UABEL M.I. Chemically modified biochar produced from conocarpus wastes: an efficient sorbent for Fe(ii) removal from acidic aqueous solutions. Adsorption Science & Technology, 31 (7), 625, 2013.
  • 33. AHMAD M., USMAN A.R.A., SANG S.L., KIM S.C., JOO J.H., YANG J.E. Eggshell and coral wastes as low cost sorbents for the removal of Pb 2+, Cd 2+, and Cu 2+, from aqueous solutions. Journal of Industrial & Engineering Chemistry, 18 (1), 198, 2012.
  • 34. INAM E., ETIM U., EDUOK U., ESSIEN J. Heavy metals sorption potential of calcareous shells of animal origin. International Journal of Chemical, Environmental and Pharmaceutical Research, 3 (3), 184, 2012.
  • 35. ADEBISI G.A., ALABA P.A. Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. Journal of Cleaner Production, 148, 958, 2017.
  • 36. BADAWI M.A., NEGM N.A., ABOU KANA M.T., HEFNI H.H., ABDEL MONEEM M.M. Adsorption of aluminum and lead from wastewater by chitosantannic acid modified biopolymers: isotherms, kinetics, thermodynamics and process mechanism. International Journal of Biological Macromolecules, 99, 465, 2017.
  • 37. ZHONG L., LI W., ZHANG Y., NORRIS P., CAO Y., PAN W.P. Kinetic studies of mercury adsorption in activated carbon modified by iodine steam vapor deposition method. Fuel, 188, 343-351, 2017.
  • 38. IGBERASE E., OSIFO P., OFOMAJA A. The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies. International Journal of Analytical Chemistry, 2017 (2), 6150209, 2017.
  • 39. NAMASIVAYAM C., SAKODA A., SUZUKI M. Removal of phosphate by adsorption onto oyster shell powder – kinetic studies. Journal of Chemical Technology & Biotechnology, 80 (3), 356, 2005.
  • 40. FULAZZAKY M.A. Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column. Chemical Engineering Journal, 166 (3), 832, 2011.
  • 41. PUTRO J.N., SANTOSO S.P., ISMADJI S., JU Y.H. Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose – bentonite nanocomposite: improvement on extended langmuir isotherm model. Microporous & Mesoporous Materials, 246, 166, 2017.
  • 42. WANG F., PAN Y., CAI P., GUO T., XIAO H. Single and binary adsorption of heavy metal ions fromaqueous solutions using sugarcane cellulose-based adsorbent. Bioresource Technology, 241, 482, 2017.
  • 43. HAN L., QIAN L.B., LIU R.Q., CHEN M.F., YAN J.C., HU Q.H. Lead adsorption by biochar under the elevated competition of cadmium and aluminum. Scientific Reports, 7 (1), 2264, 2017.
  • 44. OKOLI C.P., DIAGBOYA P.N., ANIGBOGU I.O., OLUOWOLABI B.I., ADEBOWALE K.O. Competitive biosorption of Pb(II) and Cd(II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis). Environmental Earth Sciences, 76 (1), 33, 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b4997805-deb5-4649-a658-41885f35fd0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.