Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 61 | 4 |
Tytuł artykułu

Fungi biomass in lowland rivers of North-Eastern Poland: effects of habitat conditions and nutrient concentration

Warianty tytułu
Języki publikacji
Fungi occur in almost all types of waters in the world and play an important role in many processes in the environment, particularly in organic matter decomposition. During the last several decades, extensive knowledge was obtained on the ecology of aquatic fungi, but on fungal biomass in the water column less. The study was aimed at simultaneous determination of seasonal and spatial variability of aquatic fungi biomass in the river waters in relation to selected physicochemical water parameters and trophic state in the 27 lowland rivers of north-eastern Poland with length between 17 and 308 km and mean annual discharge 1 – 100 m³ s⁻¹. The chemical and mycological evaluation was provided on the basis of 64 water samples taken in the July and October 2010. The chromatographic method of determination of seston ergosterol as a specific organic compound typical for the majority of fungi, was applied. Fungi biomass was higher in summer than in autumn. The particulate organic carbon (POC) and dissolved organic carbon (DOC) concentrations had no effect on fungal biomass in the studied river, as well as forest cover of the catchment and river discharge. Statistically significant correlations of fungal biomass in the river water with concentrations of ammonium (N–NH₄⁺), Kjeldahl (NKjel), total organic (TON) and total nitrogen (TN) and dissolved (DP) and dissolved organic phosphorus (DOP) were found. The principal component analysis indicates relations between (TIN) and phosphorus (SRP) and particulate phosphorus (PP) and freshwater fungi, specially in summer when aquatic fungi are able to modify the structure of the nutrients contained in the water column.
Opis fizyczny
  • Department of Hydrobiology, University of Bialystok, Swierkowa St. 20B, 15–950 Bialystok, Poland
  • Department of Hydrobiology, University of Bialystok, Swierkowa St. 20B, 15–950 Bialystok, Poland
  • Department of Hydrobiology, University of Bialystok, Swierkowa St. 20B, 15–950 Bialystok, Poland
  • Al-Riyami M., Victor R., Seena S., Elshafie A.E., Barlocher F. 2009 – Leaf decomposition in a mountain stream in the Sultane of Oman – Internat. Rev. Hydrobiol. 94: 16–28.
  • Barlocher F. 1992 – The ecology of aquatic hyphomycetes – Ecological Studies ser., 94, Springer–Verlag, Berlin, 225 pp.
  • Bowman R.A. 1998 – A reevaluation of the chromic procedure for soli organic carbon – Com. Soil Sci. Plant Anal. 29: 501–508.
  • Charcosset J.Y., Chauvet E. 2001 – Effect of culture conditions on ergosterol concentration in mycelium of aquatic hyphomycetes – Appl. Environ. Microbiol. 67: 2051–2055.
  • Chung N., Suberkropp K. 2009 – Contribution of fungal biomass to the growth of the shredder, Pycnopsyche gentilis (Trichoptera: Limnephilidae) – Freshwater Biol. 54: 2212–2224.
  • Czeczuga B., Godlewska, A. 2001 – Aquatic insects as vectors of aquatic zoosporic fungi parasitic on fishes – Acta Ichth. Piscat. 31: 87–104.
  • Czeczuga B., Godlewska A., Kozłowska M. 2000 – Zoosporic fungi growing on the carapaces of dead zooplankton organisms – Limnologica, 30: 37–43.
  • Czeczuga B., Górniak A., Kiziewicz B., Godlewska A., Muszyńska E., Jekatierynczuk-Rudczyk E., Zieliński P., Grosfeld A.W., Michalska J. 2010 – Zoosporic fungi and fungi-like organisms in the Siemianówka dam reservoir – Nova Hedwiga, 91: 137–150.
  • Czeczuga B., Kozłowska M., Godlewska A. 2002 – Zoosporic aquatic fungi growing on dead species of 29 freshwater crustacean species – Limnologica, 32: 180–193.
  • Czeczuga B., Mazalska B., Godlewska A., Muszyńska E. 2005 – Aquatic fungi growing on dead fragments of submerged plants – Limnologica, 35: 283–297.
  • Czeczuga B., Muszyńska E. 2001 – Aquatic fungi growing on the hair of wild and domestic animal species in diverse water bodies – Pol. J. Environ. Stud. 10: 313–323.
  • Czeczuga B., Muszyńska E. 2004 – Aquatic zoosporic fungi from baited spores of cryptograms – Fungal Diversity, 16: 11–22.
  • Czeczuga B., Orłowska M. 2001 – Hyphomycetes species on floating plant spores and pollen – Acta Hydroch. Hydrob. 29: 100–110.
  • Davis M.W., L amar R.T. 1992 – Evaluation of methods to extract ergosterol for quantitation of soil fungal biomass – Soil Biol. Biochem. 24: 189–198.
  • Djajakirana G., Joergensen R.G., Meyer B. 1996 – Ergosterol and microbial biomass relationship in soil – Biol. Fert. Soils, 22: 299–304.
  • Fabre E. 1998 – Aquatic hyphomycetes in three rivers of southwestern France. III. Relationships between spatial and temporal dynamics – Can. J. Bot. 76: 115–121.
  • Ferreira V., Chauvet E. 2011 – Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi – Global Change Biology, 17: 551–564.
  • Gao Y., Chen T., Breuil C. 1993 – Ergosterol - a measure of fungal growth in wood for staining and pitch control fungi – Biotechnol. Tech. 7: 621–626.
  • Gessner M.O., Chauvet E. 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter – Ecology, 75:1807–1817.
  • Gessner M.O., Newell S.Y. 2002 – Biomass, growth rate and production of filamentous fungi in plant litter (In: Manual of Environmental Microbiology 2nd edn, Eds: C.J. Hurst, G. Knudsen, M. McInerney, L.D. Stetzenbach, M. Walter) – Washington, Am. Soc. Microb. pp. 390–408.
  • Górniak A., Zieliński P. 2000 – Influence of catchment characteristics and hydrology on DOC in rivers in the northeastern Poland – Verh. Intern. Verein Limnol. 27: 1142–1145.
  • Graca, M.A.S. 2001 – The role of invertebrates on leaf litter decomposition in streams – a review – Internat. Rev. Hydrobiol. 86: 383–393.
  • Graca M., Barlocher F., Gessner M. 2007 – Methods to study litter decomposition: a practical guide – Dordrecht, Netherlands: Springer, 153–168.
  • Graca M.A., Maltby L., Calow, P. 1993 – Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus. I: Feeding strategies – Oecologia, 93: 139–144.
  • Gulis V., Rosemond A.D., Suberkropp K., Weyers H.S., Benstesd J.P. 2004 – Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams – Freshwater Biol. 49: 1437–1447.
  • Gulis V., Suberkropp K. 2003a – Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter – Microb. Ecol. 45: 11–19.
  • Gulis V., Suberkropp K. 2003b – Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream – Freshwater Biol. 48: 123–134.
  • Guo F.C., Woo P.T.K. 2009 – Selected parasitosis in cultured and wild fish – Vet Parasitol. 163: 207–216.
  • Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B., Zerbe J. 1999 – Fizyko–chemiczne badania wody i ścieków [Physico-chemical water and waste analysis] – Arkady, Warszawa, 847 pp.
  • Jobard M., Rasconi S., Sime-Ngando T. 2010 – Diversity and functions of microscopic fungi: a missing component in pelagic food webs – Aquat. Sci. 72: 255–268.
  • Jorgensen N.O.G., Stepanauskas R. 2009 – Biomass of pelagic fungi in Baltic rivers – Hydrobiologia, 623:105–112.
  • Kaushik N.K., Hynes H.B.N. 1971 – Fate of dead leaves fall into streams – Arch. Hydrobiol. 68: 465–515.
  • Kiziewicz B. 2004 – Aquatic fungi and funguslike organisms in the bathing sites of the river Supraśl in Podlasie Province of Poland – Micol. Balcanica, 1: 77–83.
  • Krauss G.J., Sole M., Krauss G., Schlosser D., Wesenberg D., Barlocher F. 2011 – Fungi in freshwaters: ecology, physiology and biochemical potential – FEMS Microbiol. Rev. 35: 620–651.
  • Laitung B., Pretty J.L., Chauvet E., Dobson M. 2002 – Response of aquatic hyphomycete communities to enhanced stream retention in areas impacted by commercial forestry – Freshwater Biol. 47: 313–323.
  • Lecerf A., Chauvet E. 2008 – Diversity and functions of leaf-decaying fungi in human-alerted streams – Freshwater Biol. 53: 1658–1672.
  • Lorenzen C.J. 1965 – A note on the chlorophyll and phaeophytin content of the chlorophyll maximum – Limnol. Oceanogr. 10: 482–483.
  • Mille-Lindblom C., Tranvik L.J. 2003 – Antagonism between bacteria and fungi on decomposing aquatic plant litter – Microb. Ecol. 45: 173–182.
  • Newell S.Y. 1992 – Estimating fungal biomass and productivity in decomposing litter (In: The Fungal Community. Its Organization And Role in the Ecosystem, Eds: G.C. Carroll, D.T. Wicklow) – Marcel Dekker. New York, pp. 521–561.
  • Nikolcheva L.G.B., Bourque T., Barlocher F. 2005 – Fungal diversity during initial stage of leaf decomposition in a stream – Mycol. Res. 109: 246–253.
  • Pascoal C., Cássio F. 2004 – Contribution of fungi and bacteria to leaf litter decomposition in a polluted river – Appl. Environ. Microb. 70: 5266–5273.
  • Pattee E., Chergui H. 1995 – The application of habitat temples and trails to hyphomycetes fungi in a mid-European river system – Freshwater Biol. 33: 525–539.
  • Shearer C.A., Descals E., Kohlmeyer B., Kohlmeyer J., Marvanova L., Padgett D., Porter D., Raja H.A., Schmit J.P., Thorton H.A., Voglymayar H. 2007 – Fungal biodiversity in aquatic habitats – Biodiv. Conserv. 16: 49–67.
  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R., Cushing C.E. 1980 – The River Continuum Concept – Can. J. Fish Aquat. Sci. 37: 130–137.
  • Wong M.K.L., Goh T.-K., Hodgkiss I.J., Hyde K.D., Ranghoo V.M., Tsui C.K.M., Ho W.-H., Wong W.S.W., Yuen T.-K. 1998 – Role of fungi in freshwater ecosystems – Biodiv. Conserv. 7: 1187– 1206.
  • Zieliński P., Górniak A., Piekarski M.K. 2009 – The effect of hydrological drought on chemical quality of water and dissolved organic carbon concentrations in lowland rivers – Pol. J. Ecol. 57: 373–384.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.