PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 4 |

Tytuł artykułu

Effects of overexpression of four Populus wound-inducible genes in Arabidopsis on its resistance against Plutella xylostella L

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Wounding- and herbivore-inducible proteins are potential resources to enhance the resistance to insect pests in transgenic plants. In order to analyze the effects of four such highly inducible genes of Populus, two genes encoding trypsin inhibitors (PtdKTI5 from hybrid poplar, Populus trichocarpa × P. deltoides and PtKTI2 from trembling aspen, Populus tremuloides Michx.), a woundinducible gene (PtdKTI5 from hybrid poplar, Populus trichocarpa × P. deltoids) and a stress-responsive gene (PtdPOP3 from hybrid poplar, Populus trichocarpa × P. deltoids), we have produced transgenic Arabidopsis thaliana expressing these genes individually under the control of the CaMV35S promoter by Agrobacterium-mediated transformation. Stable integration and high transcriptional levels of the target cDNAs and their inheritance in transgenic Arabidopsis lines were confirmed by genomic PCR, quantitative PCR and T₃ progeny segregation analysis. In the no-choice bioassays, all the four types of transgenic Arabidopsis confer different levels of insect resistance against Plutella xylostella L. larvae at various stages and the PtdKTI5 overexpressing plants turned out to be most effective. Our data indicated that these four Populus defense-related genes under investigation could be potentially exploited for the protection against P. xylostella L. in transgenic plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

4

Opis fizyczny

p.1583-1588,fig.,ref.

Twórcy

autor
  • School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
autor
  • School of Agriculture and Bioengineering, Tianjin University, 300072 Tianjin, China
autor
  • School of Agriculture and Bioengineering, Tianjin University, 300072 Tianjin, China
autor
  • School of Agriculture and Bioengineering, Tianjin University, 300072 Tianjin, China
autor
  • School of Agriculture and Bioengineering, Tianjin University, 300072 Tianjin, China
autor
  • Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden

Bibliografia

  • Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants overexpressing two families of plant proteinase inhibitors. Plant Mol Biol 57:189–202
  • Amirhusin B, Shade RE, Koiwa H, Hasegawa PM, Bressan RA, Murdock LL, Zhu-Salzman K (2007) Protease inhibitors from several classes work synergistically against Callosobruchus maculatus. J Insect Physiol 53:734–740
  • Bradshaw HD Jr, Hollick JB, Parsons TJ, Clarke HR, Gordon MP (1990) Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol Biol 14:51–59
  • Broadway RM (1995) Are insects resistant to plant proteinase inhibitors? J Insect Physiol 41:107–116
  • Christopher ME, Miranda M, Major IT, Constabel CP (2004) Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219:936–947
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
  • Davis JM, Egelkrout EE, Coleman GD, Chen TH, Haissig BE, Riemenschneider DE, Gordon MP (1993) A family of woundinduced genes in Populus shares common features with genes encoding vegetative storage proteins. Plant Mol Biol 23:135–143
  • De Leo F, Bonade-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Opposite effects on spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol 118:997–1004
  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA 107:15011–15015
  • Dure L III (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369
  • Haruta M, Major IT, Christopher ME, Patton JJ, Constabel CP (2001) A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Mol Biol 46:347–359
  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403
  • Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotinbinding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12:671–681
  • Major IT, Constabel CP (2008) Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol 146:888–903
  • Marchetti S, Delledonne M, Fogher C, Chiaba C, Chiesa F, Savazzini F, Giordano A (2000) Soybean Kunitz, C-II and PI-IV inhibitor genes confer different levels of insect resistance to tobacco and potato transgenic plants. Theor Appl Genet 101:519–526
  • McBride KE, Summerfelt KR (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276
  • McManus MT, Laing WA, Christeller JT, White DW (1994) Posttranslational modification of an isoinhibitor from the potato proteinase inhibitor II gene family in transgenic tobacco yields a peptide with homology to potato chymotrypsin inhibitor I. Plant Physiol 106:771–777
  • Meade T, Hare JD (1993) Effects of differential host plant consumption by Spodoptera exigua (Lepidoptera: Noctuidae) on Bacillus thuringiensis efficacy. Environ Entomol 22:432–437
  • Pelah D, Shoseyov O, Altman A (1995) Characterization of BspA, a major boiling-stable, water-stress-responsive protein in aspen (Populus tremula). Tree Physiol 15:673–678
  • Pelah D, Shoseyov O, Altman A, Bartels D (1997a) Water-stress response in aspen (Populus tremula): differential accumulation of dehydrin, sucrose synthase, GAPDH homologues, and soluble sugars. J. Plant Physiol 151:96–100
  • Pelah D, Wang WX, Altman A, Shoseyov O, Bartels D (1997b) Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant 99:153–159
  • Saarikoski P, Clapham D, von Arnold S (1996) A wound-inducible gene from Salix viminalis coding for a trypsin inhibitor. Plant Mol Biol 31:465–478
  • Silva-Torres CS, Pontes IV, Torres JB, Barros R (2010) New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. Neotrop Entomol 39:835–838
  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599
  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604
  • Yang L, Fang Z, Dicke M, van Loon JJ, Jongsma MA (2009) The diamondback moth, Plutella xylostella, specifically inactivates mustard trypsin inhibitor 2 (MTI2) to overcome host plant defence. Insect Biochem Mol Biol 39:55–61
  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b3992cb4-9d5c-48b3-bf4e-c747689fee3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.