Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 07 | 4 |
Tytuł artykułu

Dynamin: characteristics, mechanism of action and function

Warianty tytułu
Języki publikacji
Dynamin - a member of the GTP-ase protein family - is essential for many intracellular membrane trafficking events in multiple endocytic processes. The unique biochemical features of dynamin - especially its propensity to assemble - enable severing the nascent vesicles from the membrane. The mechanism of dynamin’s action is still a subject of debate - whether it functions as a mechanochemical enzyme or a regulatory GTPase. The GTPase domain of dynamin contains three GTP-binding motifs. This domain is very conservative across the species, including that recently cloned by us in the unicellular eukaryote Paramecium. Dynamin interacts with a number of partners such as endophilin and proteins involved in coordination of endocytosis with motor molecules. A growing body of evidence indicates that dynamin and dynamin-related proteins are involved both in pathology and protection against human diseases. The most interesting are dynamin-like Mx proteins exhibiting antiviral activity.
Opis fizyczny
  • Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland
  • Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland
  • 1. Schmid, S. L., McNiven, M. A. and De Camili, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10 (1998) 504-512.
  • 2. Hinshaw, J. E. Dynamin and its role in membrane fission. Annu. Rev. Cell. Dev. Biol. 16 (2000) 483-519.
  • 3. McNiven, M. A., Cao, H., Pitts, K. R. and Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends. Biochem. Sci. 25 (2000) 115-120.
  • 4. Oved, S. and Yarden, Y. Signal transduction: molecular ticket to enter cells. Nature 416 (2002) 133-136.
  • 5. Hill, E., van Der Kaay, J., Downes, C. P. and Smythe, E. The role of dynamin and its binding partners in coated pit invagination and scission. J. Cell Biol. 152 (2001) 309-323.
  • 6. Van der Bliek, A. M. Functional diversity in the dynamin family. Trends Cell Biol. 9 (1999) 96-102.
  • 7. Achiriloaie, M., Barylko, B. and Albanesi, J. P. Essential role of dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell. Biol. 19 (1999) 1410-1415.
  • 8. Barylko, B., Binns, D. D. and Albanesi, J. P. Activation of dynamin GTPase activity by phosphoinositides and SH3 domain-containing proteins. Methods Enzymol. 329 (2001) 486-96.
  • 9. Wiejak, J., Płatek, A. and Wyroba, E. Searching for a putative dynamin homologue in Paramecium. 18th Int. Congress Biochemistry & Molecular Biology (2000) Birmingham, 1261.
  • 10. Surmacz, L., Wiejak, J. and Wyroba, E. Cloning and sequencing of Paramecium dynamin gene fragment. Eur. J. Biochem. 268 (2001) Supp.l, PS2-013.
  • 11. Wiejak, J., Surmacz, L. and Wyroba, E. Role of Paramecium dynamin homologue in endocytosis. Abstracts 7th IUBMB Conference, Bergen, P42 (2002) A58.
  • 12. Wiejak, J., Surmacz, L. and Wyroba, E. Effect of wortmannin and phorbol ester on Paramecium fluid-phase uptake in the presence of transferrin. Eur. J. Histochem. 45 (2001) 383-388.
  • 13. Binns, D. D., Barylko, B., Grichine, N., Atkinson, M. A., Helms, M. K., Jameson, D. M., Eccleston, J. F. and Albanesi, J. P. Correlation between self-association modes and GTPase activation of dynamin. J. Protein Chem. 18 (1999) 277-90.
  • 14. Sever, S., Damke, H. and Schmid, S. L. Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic 1 (2000) 385-392.
  • 15. Sever, S., Muhlberg, A. B. and Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398 (1999) 481-486.
  • 16. Sever, S., Damke, H. and Schmid, S. L. Dynamin: GTP Controls the formation of constricted coated pits, the rate limiting step in clathrin- mediated endocytosis. J. Cell Biol. 150 (2000) 1137-1148.
  • 17. Marks, B., Stowell, M. H., Vallis, Y., Mills, I. G., Gibson, A., Hopkins, C. R. and McMahon, H. T. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410 (2000) 231-235.
  • 18. Eccleston, J. F., Binns, D. D., Davis, C. T., Albanesi, J. P. and Jameson, D. M. Oligomerization and kinetic mechanism of the dynamin GTPase. Eur. Biophys. J. 31 (2002) 275-282.
  • 19. Smirnova, E., Shurland, D. L., Newman-Smith, E. D., Pishvaee, B. and van der Bliek, A. M. A model for dynamin self-assembly based on binding between three different protein domains. J. Biol. Chem. 274 (1999) 14942- 14947.
  • 20. Kirchhausen, T. Cell biology. Boa constrictor or rattlesnake? Nature 398 (1999) 470-471.
  • 21. Janzen, C., Kochs, G, and Haller, O. A monomeric GTPase-negative MxA mutant with antiviral activity. J. Virol. 74 (2000) 8202-8206.
  • 22. Ahn, S., Kim, J., Lucaveche, C. L., Reedy, M. C., Luttrell, L. M., Lefkowitz, R. J. and Daaka, Y. Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J. Biol. Chem. 277 (2002) 26642-26651.
  • 23. Orth, J. D., Krueger, E. W., Cao, H. and McNiven, M. A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl. Acad. Sci. USA 99 (2002) 167-172.
  • 24. Witke, W., Podtelejnikov, A. V., Di Nardo, A., Sutherland, J. D., Gurniak, C. B., Dotti, C. and Mann, M. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17 (1998) 967-976.
  • 25. Qualmann, B. and Kelly, R. B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148 (2000) 1047-1062.
  • 26. Jeng, R. L. and Welch, M. D. Cytoskeleton: actin and endocytosis - no longer the weakest link. Curr. Biol. 11 (2001) R691-R694.
  • 27. Olazabal, I. M. and Machesky, L. M. Abp1p and cortactin, new "hand-holds" for actin. J. Cell. Biol. 154 (2001) 679-682.
  • 28. Jin, M., Park, J., Lee, S., Park, B., Shin, J., Song, K. J., Ahn, T. I., Hwang, S. Y., Ahn, B. Y. and Ahn, K. Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis. Virology 294 (2002) 60-69.
  • 29. Chieux, V., Hober, D., Chehadeh, W. and Wattre, P. Alpha interferon, antiviral proteins and their value in clinical medicine. Ann. Biol. Clin. (Paris) 57 (1999) 659-666.
  • 30. Praefcke, G. J., Geyer, M., Schwemmle, M., Kalbitzer, R. H. and Herrmann, C. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif. J. Mol. Biol. 292 (1999) 321-332.
  • 31. Hjelle, B., Jenison, S. A., Goade, D. E., Green, W. B., Feddersen, R. M. and Scott, A. A. Hantaviruses: clinical, microbiologic, and epidemiologic aspects. Crit. Rev. Clin. Lab. Sci. 32 (1995) 469-508.
  • 32. Song, G. Epidemiological progresses of hemorrhagic fever with renal syndrome in China. Chin. Med. J. (Engl) 112 (1999) 472-477.
  • 33. Haller, O. and Kochs, G. Interferon-induced Mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3 (2002) 710-717.
  • 34. Delettre, C., Lenaers, G., Pelloquin, L., Belenguer, P. and Hamel, C. P. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol. Genet. Metab. 75 (2002) 97-107.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.