PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Determining indigenous microalgae species in Malakand water bodies for potentialuse as a biofuel production source

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As a renewable energy source, microalgae have wide interest as a potential tool to produce biofuel and bioproducts. Prevailing in the local habitat, indigenous microalgae are more successful for wastewater treatment processes. Integrated microalgae-based biofuel and bioproduct production with wastewater treatment is a successful practice of modern research. This report describes the isolation and identification of 61 microalgal strains from lakes, springs, ponds, creeks, and rivers of the gigantic area of Malakand, Pakistan. Our study involves the seasonal existence of Chlorophyta in the area, with most dominant flora identified in the summer season followed by spring, autumn, and winter seasons, respectively. The highest ratio of microalgae was found in stagnant waters followed by slow-running water and running water, respectively. However, algal species were reported from all water bodies throughout the year. Commercially important genera like Chlorella, Scenedesmus, and Chlamydomonas were also reported, attracting the research area for further analysis regarding biofuel, bioproduct production, and simultaneous wastewater treatment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.669-679,fig.,ref.

Twórcy

autor
  • School of Resources, Environmental and Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330000, China
  • Department of Botany, Qurtuba University of Science and Information Technology, Peshawar 25100, KPK, Pakistan
  • Department of Botany, Islamia College Peshawar, 25100, Pakistan
autor
  • School of Resources, Environmental and Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330000, China
autor
  • Fu Foundation School of Engineering and Applied Science, Columbia University in the City of New York, New York, NY 10027, USA
autor
  • Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
  • College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
autor
  • Fu Foundation School of Engineering and Applied Science, Columbia University in the City of New York, New York, NY 10027, USA
autor
  • School of Resources, Environmental and Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330000, China
autor
  • Department of Botany, Islamia College Peshawar, 25100, Pakistan
autor
  • Department of Botany, Islamia College Peshawar, 25100, Pakistan
  • Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
autor
  • China Pharmaceutical University, Nanjing China
autor
  • Department of Botany, Qurtuba University of Science and Information Technology, Peshawar 25100, KPK, Pakistan
autor
  • School of Ecology and Environmental Science, Yunnan University, North Cuihu road, Kunming, Yunnan, 650091, PR-China

Bibliografia

  • 1. Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29, 686, 2011.
  • 2. Zhou W., Min M., Li Y., Hu B., Ma X., et al. A heterophotoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol 110, 448, 2012.
  • 3. Abdelaziz A.E., Leite G.B., Belhaj M.A., Hallenbeck P.C. Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresour Technol 157, 140, 2014.
  • 4. Tan C.H., Show P.L., Chang J.S., Ling T.C., Lan J.C. Novel approaches of producing bioenergies from microalgae: A recent review. Biotechnol Adv 33, 1219, 2015.
  • 5. Shuaib M., Ali K., Zeb U., Ahmed S., Ali S., et al. To assess the fresh water algal diversity in relation to water quality from river Panjkora, district Dir lower, Pakistan. Pure and Applied Biology (PAB) 6, 645, 2017.
  • 6. Alcantara C., Dominguez J.M., Garcia D., Blanco S., Perez R., et al. Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances. Bioresource Technology 191, 173, 2015.
  • 7. Sydney E.B., da Silva T.E., Tokarski A., Novak A.C., de Carvalho J.C., et al. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy 88, 3291, 2011.
  • 8. Zhou W., Li Y., Min M., Hu B., Zhang H., et al. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Applied Energy 98, 433, 2012.
  • 9. Park J.B., Craggs R.J., Shilton A.N. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102, 35, 2011.
  • 10. Hu B., Min M., Zhou W., Li Y., Mohr M., et al. Influence of exogenous CO₂ on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Appl Biochem Biotechnol 166, 1661, 2012.
  • 11. Hussain F., Shah S.Z., Zhou W., Iqbal M. Microalgae screening under CO₂ stress: Growth and micronutrients removal efficiency. Journal of Photochemistry and Photobiology B: Biology, 2017.
  • 12. Atiku H., Mohamed R.M.S.R., Al-Gheethi A.A., Wurochekke A.A., Kassim A.H.M. Harvesting of microalgae biomass from the phycoremediation process of greywater. Environmental Science and Pollution Research 23, 24624, 2016.
  • 13. Baicha Z., Salar-Garcia M.J., Ortiz-Martinez V.M., Hernandez-Fernandez F.J., de los Rios A.P., et al. A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells. Fuel Processing Technology 154, 104, 2016.
  • 14. Chen G., Zhao L., Qi Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Applied Energy 137, 282, 2015.
  • 15. Delrue F., Alvarez-Diaz P.D., Fon-Sing S., Fleury G., Sassi J.-F. The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm. Energies 9, 2016.
  • 16. Garcia-Garcia J.D., Sanchez-Thomas R., Moreno-Sanchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnology Advances 34, 859, 2016.
  • 17. Gerardo M.L., Van Den Hende S., Vervaeren H., Coward T., Skill S.C. Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Research-Biomass Biofuels and Bioproducts 11, 248, 2015.
  • 18. Hallenbeck P.C., Grogger M., Mraz M., Veverka D. Solar biofuels production with microalgae. Applied Energy 179, 136, 2016.
  • 19. Wang J., Zhou W., Yang H., Wang F., Ruan R. Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater. Bioresource Technology 196, 668, 2015.
  • 20. He P.J., Mao B., Shen C.M., Shao L.M., Lee D.J., et al. Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresour Technol 129, 177, 2013.
  • 21. Ho L., Ho G. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid. Water Res 46, 4339, 2012.
  • 22. Zimmo O.R., van der Steen N.P., Gijzen H.J. Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Res 37, 4587, 2003.
  • 23. Cai T., Park S.Y., Li Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable & Sustainable Energy Reviews 19, 360, 2013.
  • 24. Zhou W., Li Y., Min M., Hu B., Chen P., et al. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology 102, 6909, 2011.
  • 25. Zhou W., Chen P., Min M., Ma X., Wang J., et al. Environment-enhancing algal biofuel production using wastewaters. Renewable & Sustainable Energy Reviews 36, 256, 2014.
  • 26. Zhou W., Cheng Y., Li Y., Wan Y., Liu Y., et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167, 214, 2012.
  • 27. Zhou W., Hu B., Li Y., Min M., Mohr M., et al. Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Appl Biochem Biotechnol 168, 348, 2012.
  • 28. Salah-Ud-Din K., M.S, Hussain F. Documentation of microalgal species from selected regions of Peshawarvalley, Khyber Pakhtunkhawa (KPK), Pakistan. Pure Appl Biol. 2017.
  • 29. Shah S.Z., Faridi M. Some Green Algae from Paddy Fields of Mathra (DISTT: PESHAWAR);. Department of Botany, University of Peshawar. 239, 1982.
  • 30. Hoh D., Watson S., Kan E. Algal biofilm reactors for integrated wastewater treatment and biofuel production: A review. Chemical Engineering Journal 287, 466, 2016.
  • 31. Hwang J.-H., Church J., Lee S.-J., Park J., Lee W.H. Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science 33, 882, 2016.
  • 32. Judd S., van den Broeke L.J.P., Shurair M., Kuti Y., Znad H. Algal remediation of CO₂ and nutrient discharges: A review. Water Research 87, 356, 2015. 33. Kligerman D.C., Bouwer E.J. Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renewable & Sustainable Energy Reviews 52, 1834, 2015.
  • 34. Libralato G., Prato E., Migliore L., Cicero A.M., Manfra L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecological Indicators 69, 35, 2016.
  • 35. Maity J.P., Bundschuh J., Chen C.-Y., Bhattacharya P Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives - A mini review. Energy 78, 104, 2014.
  • 36. Zhou W., Min M., Hu B., Ma X., Liu Y., et al. Filamentous fungi assisted bio-flocculation: A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Separation and Purification Technology 107, 158, 2013.
  • 37. Du Z., Hu B., Shi A., Ma X., Cheng Y., et al. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour Technol 126, 354, 2012.
  • 38. Du Z., Ma X., Li Y., Chen P., Liu Y., et al. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: catalyst screening in a pyroprobe. Bioresour Technol 139, 397, 2013.
  • 39. Hu B., Min M., Zhou W., Du Z., Mohr M., et al. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresour Technol 126, 71, 2012.
  • 40. Min M., Wang L., Li Y., Mohr M.J., Hu B., et al. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol 165, 123, 2011.
  • 41. Khattak T., Bhatti N.Z., Murtaza G. Evaluation of algae from the effluent of Dandot Cement Company, Dandot, Pakistan, 2005.
  • 42. Sarim F., Kouser A. Some member of order Chloroccoccales of district Haripur. Pakistan Journal of Plant Sciences 13, 2007.
  • 43. Chughtai M.I., Kausar T., Mahmood K., Naeem M., Awan A.R. Studies on Limnological Characteristics and Planktonic Diversity in Dg Khan Canal Water At Dg Khan (Pakistan). Pakistan Journal of Botany 45, 599, 2013.
  • 44. Ali A., Shinwari Z.K., Sarim F.M. Contribution to the algal flora (Chlorophyta) of fresh waters of district Swat. NWFP, Pakistan. Pak J Bot 42, 3457, 2010.
  • 45. Sher K., Hazrat A. Taxonomic study of green algae of lower river Swat KPK, Pakistan. FUUAST Journal of Biology 2, 2012.
  • 46. Sarim F., Jehan M., Nisa K. Genera Oedogonium and Bulbochaete (order Oedogoniales) of Peshawar valley, Pakistan. Pak J Pl Sci 15, 107, 2009.
  • 47. Zarina A., Shameel M. Occurrence of the genus Bulbochaete (Zygnemophyceae Shameel) from Gujranwala and Lahore Districts of Pakistan. Proceedings-Pakistan Academy of Sciences 44, 105, 2007.
  • 48. Leghari S.M., Arbani S., Jehangir T. Chlorococcales (Chlorophyta) of Sindh, Pakistan, 2001.
  • 49. Korai A., Sahato G., Lashari K., Arbani S. Biodiversity in relation to physico-chemical properties of Keenjhar lake, Thatta district, Sindh, Pakistan. Turkish Journal Fisheries and Aquatic Sciences 8, 259, 2008.
  • 50. Leghari S. Some Fresh Water Green Filamentous Algae (Chlorophyta) and Dinoboron cilindrica (Chrysophyta) from Lakes and Riverin Ponds of Sindh, Pakistan. Pakistan Journal of Biological Sciences 1, 145, 2001.
  • 51. Hussain F., Leghari M., Ahmad H., Iqbal A., Saleem M., et al. Taxonomic study of freshwater unicellular green algal species from Peshawar valley. International Journal of Phycology and Phycochemistry 7, 2011.
  • 52. Nazneen S., Bari G. Seasonal distribution of phytoplankton in Haleji lake. Pakistan Journal of Agricultural Research 5, 183, 1984.
  • 53. Shahnaz A., Zarina A., Shameel M. Survey of some volvocophyta Shameel from Lahore, Pakistan. International Journal of Phycology and Phycochemistry 3, 2007.
  • 54. Sarim F.M. A Monograph on the Desmids of Pakistan: University of Peshawar, Peshawar, 1982.
  • 55. Khair-un-Nisa F., Kouser A. Some Member of Order Chloroccoccales of District Haripur. Pak J Pl Sci 135, 141, 2007.
  • 56. Iqbal F., Ali M., Kanwal N. Limnological Study of River Soan (Punjab), Pakistan. Agriculturae Conspectus Scientificus (ACS) 71, 65, 2006.
  • 57. Leghari M., Waheed S.B., Leghari M. Ecological Study of Algal Flora of Kunhar River of Pakistan. Pakistan Journal of Botany 33, 176, 2001.
  • 58. Zarina A., Shameel M. Taxonomic study on volvocophyceae Shameel from certain areas of the Punjab. Pakistan Journal of Botany 40, 2008.
  • 59. Samreen U., Hussain F., Ali N. Fresh water algae from River Naguman near Shakarpura, District Peshawar, Pakistan. Pakistan Journal of Plant Sciences 18, 2012.
  • 60. Zaman A., Sarim F. Some freshwater algae found in various localities of Peshawar valley [Pakistan]. International Journal of Biology and Biotechnology 2, 2005.
  • 61. Badshah L., Hussain F., Ali N. Chlorophycean Algae of Kurram River, Parachinar, Pakistan. Pakistan Journal of Plant Sciences, 2011.
  • 62. Husna R., Zarina A., Shameel M. Taxonomic study of volvocophyta Shameel from fountain water of Lahore, Pakistan. International Journal of Phycology and Phycochemistry 4, 2008.
  • 63. Javed M. Studies on metal contamination levels in plankton and their role as biological indicator of water pollution in the river Ravi. Pakistan J Biol Sci, 313, 2006.
  • 64. Habib I., Chaturvedi U. Pediastrum-Habibii Sp-Nov, an Interesting New Alga. Pakistan Journal Of Botany 24, 213, 1992.
  • 65. Salah-Ud-Din K., Shuaib M., Hussain F. Documentation of microalgal species from selected regions of Peshawar valley, Khyber Pakhtunkhawa (KPK), Pakistan. Pure and Applied Biology, 2017.
  • 66. Butt G.Y. Investigations on Phycochemistry and Bioactivity of Eleven Freshwater Green Algae of Sindh: University of Karachi, Karachi. 2003.
  • 67. Akhtar N., Rehman S.R. Some members of ulotrichales from Jalala, District Mardan, Pakistan. Pak J Pl Sci 15, 19, 2009.
  • 68. Santos-Ballardo D.U., Rossi S., Reyes-Moreno C., Valdez-Ortiz A. Microalgae potential as a biogas source: current status, restraints and future trends. Reviews in Environmental Science and Bio-Technology 15, 243, 2016.
  • 69. Schnurr P.J., Allen D.G. Factors affecting algae biofilm growth and lipid production: A review. Renewable & Sustainable Energy Reviews 52, 418, 2015.
  • 70. Singh V., Tiwari A., Das M. Phyco-remediation of industrial waste-water and flue gases with algal-diesel engenderment from micro-algae: A review. Fuel 173, 90, 2016.
  • 71. Solovchenko A., Verschoor A.M., Jablonowski N.D., Nedbal L. Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnology Advances 34, 550, 2016.
  • 72. Tarayre C., De Clercq L., Charlier R., Michels E., Meers E., et al. New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource Technology 206, 264, 2016.
  • 73. Umamaheswari J., Shanthakumar S. Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Bio-Technology 15, 265, 2016.
  • 74. Wagner D.S., Valverde-Perez B., Saebo M., de la Sotilla M.B., Van Wagenen J., et al. Towards a consensus-based biokinetic model for green microalgae - The ASM-A. Water Research 103, 485, 2016.
  • 75. Wang S.-K., Stiles A.R., Guo C., Liu C.-Z. Microalgae cultivation in photobioreactors: An overview of light characteristics. Engineering in Life Sciences 14, 550, 2014.
  • 76. Ward A.J., Lewis D.M., Green B. Anaerobic digestion of algae biomass: A review. Algal Research-Biomass Biofuels and Bioproducts 5, 204, 2014.
  • 77. Zeng X., Guo X., Su G., Danquah M.K., Zhang S., et al. Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renewable & Sustainable Energy Reviews 42, 1385, 2015.
  • 78. Cho K., Shin S.G., Lee J., Koo T., Kim W., et al. Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater. J Biosci Bioeng 122, 196, 2016.
  • 79. Domingos S.S., Dallas S., Skillman L., Felstead S., Ho G. Nitrogen removal and ammonia-oxidising bacteria in a vertical flow constructed wetland treating inorganic wastewater. Water Sci Technol 64, 587, 2011.
  • 80. Kim Y.M. Acclimatization of communities of ammonia oxidizing bacteria to seasonal changes in optimal conditions in a coke wastewater treatment plant. Bioresour Technol 147, 627, 2013.
  • 81. Lian Y., Xu M., Zhong Y., Yang Y., Chen F., et al. Ammonia oxidizers in a pilot-scale multilayer rapid infiltration system for domestic wastewater treatment. PLoS One 9, e114723, 2014.
  • 82. Adenan N.S., Yusoff F.M., Medipally S.R., Shariff M. Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. Journal of Environmental Biology 37, 669, 2016.
  • 83. Brown N., Shilton A. Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Reviews in Environmental Science and Bio-Technology 13, 321, 2014.
  • 84. Cho S., Kim J., Kim S., Lee S.S. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with ecofriendly marine high-efficiency sediment. Environ Technol: 1, 2017.
  • 85. de-Bashan L.E., Moreno M., Hernandez J.P., Bashan Y. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36, 2941, 2002.
  • 86. Kong Q.X., Li L., Martinez B., Chen P., Ruan R. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160, 9, 2010.
  • 87. Li M., Wan C.-Y., Pan X.-J., Zou Y., Chi S.-Y., et al. comparative study of stress by four heavy metals on chlamydomonas reinhardtii and the potential application in bbe algae toximeter. Fresenius Environmental Bulletin 22, 1494, 2013.
  • 88. Ahmed A., Jyothi N., Ramesh A. Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa. Water Science and Technology 75, 182, 2017.
  • 89. Cheng J., Ye Q., Yang Z., Yang W., Zhou J., et al. Microstructure and antioxidative capacity of the microalgae mutant Chlorella PY-ZU1 during tilmicosin removal from wastewater under 15% CO₂. Journal of Hazardous Materials 324, 414, 2017.
  • 90. Deng D., Tam N.FY. Adsorption-uptake-metabolism kinetic model on the removal of BDE-47 by a Chlorella isolate. Environmental Pollution 212, 290, 2016.
  • 91. He P.J., Mao B., Lu F., Shao L.M., Lee D.J., et al.The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters. Bioresource Technology 146, 562, 2013.
  • 92. Baglieri A., Sidella S., Barone V., Fragala F., Silkina A., et al. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environmental Science and Pollution Research 23, 18165, 2016
  • 93. Lutzu G.A., Zhang W., Liu T. Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus. Environmental Technology 37, 1568, 2016.
  • 94. Pancha I., Chokshi K., Maurya R., Trivedi K., Patidar S.K., et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 189, 341, 2015.
  • 95. Zhang E., Wang B., Wang Q., Zhang S., Zhao B. Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99, 3787, 2008.
  • 96. Zhang T.-Y., Hu H.-Y., Wu Y.-H., Zhuang L.-L., Xu X.-Q., et al. Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renewable & Sustainable Energy Reviews 60, 1602, 2016.
  • 97. Zhu L. Microalgal culture strategies for biofuel production: a review. Biofuels Bioproducts & Biorefining-Biofpr 9, 801, 2015.
  • 98. Zhuang L.-L., Wu Y.-H., Espinosa V.M.D., Zhang T.-Y., Dao G.-H., et al. Soluble Algal Products (SAPs) in large scale cultivation of microalgae for biomass/bioenergy production: A review. Renewable & Sustainable Energy Reviews 59, 141, 2016.
  • 99. Chandra R., Subhash G.V., Mohan S.V. Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity. Bioresource Technology 109, 46, 2012.
  • 100. Coats E.R., Brinkman C.K., Lee S. Characterizing and contrasting the microbial ecology of laboratory and full-scale EBPR systems cultured on synthetic and real wastewaters. Water Research 108, 124, 2017.
  • 101. de Godos I., Guzman H.O., Soto R., Garcia-Encina P.A., Becares E., et al. Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresource Technology 102, 923, 2011.
  • 102. Makareviciene V., Skorupskaite V., Andruleviciute V. Biodiesel fuel from microalgae-promising alternative fuel for the future: a review. Reviews in Environmental Science and Bio-Technology 12, 119, 2013.
  • 103. Montemezzani V., Duggan I.C., Hogg I.D., Craggs R.J. A review of potential methods for zooplankton control in wastewater treatment High Rate Algal Ponds and algal production raceways. Algal Research-Biomass Biofuels and Bioproducts 11, 211, 2015.
  • 104. Pawar S. Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renewable & Sustainable Energy Reviews 62, 640, 2016.
  • 105. Rangabhashiyam S., Suganya E., Selvaraju N., Varghese L.A. Significance of exploiting nonliving biomaterials for the biosorption of wastewater pollutants. World Journal of Microbiology & Biotechnology 30, 1669, 2014.
  • 106. Razzak S.A., Hossain M.M., Lucky R.A., Bassi A.S., de lasa H. Integrated CO₂ capture, wastewater treatment and biofuel production by microalgae culturing-A review. Renewable & Sustainable Energy Reviews 27, 622, 2013.
  • 107. Renuka N., Sood A., Prasanna R., Ahluwalia A.S. Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. International Journal of Environmental Science and Technology 12, 1443, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b3523e67-7617-43a3-bb05-4a8f18ad481d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.