PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 3 |

Tytuł artykułu

Nitrate nitrogen and phosphate concentrations in drainflow: An example of clay soil

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Nutrients dissolved in water and not taken by plants leach into deeper soil layers or flow out to surface water through pipe drainage systems, causing ground or surface water contamination. Thus, drainflow from agricultural areas has significant influence on surface water eutrophication. The objectives of this study were to evaluate nitrate nitrogen and phosphate concentrations and load changes in drainflow using as an example clay soil analyzed in period spanning the years 2010 and 2013. Field research was conducted at an experimental site in Lidzbark Warmiński, in the Province of Warmia and Mazury (województwo warmińsko-mazurskie) in Poland. Mollic Gleysols developed from loam and clay dominate in this area. The experimental field has a tile drainage system with 21 m drain spacing and average 0.9 m drain depth. Winter wheat (Triticum L.) and oilseed rape (Brassica napus) were cultivated in 2009–2012 and in 2012–2013, respectively. Chemical analysis of water samples was performed with a Hach Lange DR 3900 spectrophotometer. Annual rainfall ranged from 555 mm in 2013 to 814 mm in 2012. Average nitrate nitrogen daily loads ranged from 0.07 to 0.58 kg ha-1, while the total annual nitrate load varied from 7.5 to 34.6 kg ha-1. Daily loads of phosphate were about ten times lower than daily loads of nitrate and the total annual phosphate load ranged from 0.1 to 2.0 kg ha-1. Neither nitrate nor phosphate concentrations are strongly depended on drainflow, but the nitrate nitrogen concentration indicates some relationship with the season. A substantial increase in the nitrate nitrogen concentration appears at snow melting (March) and continues until the end of May, peaking in the third decade of April, when the cultivated crops begin the vegetative growth. The phosphate concentration did not undergo significant changes during the investigated period.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

3

Opis fizyczny

p.899-913,fig.,ref.

Twórcy

autor
  • Chair of Environmental Improvement, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland
  • Laboratory – Water Center, Warsaw University of Life Sciences, Warsaw, Poland
autor
  • Chair of Water Resources, Climatology and Environmental Management, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Chair of Hydraulic Engineering, Warsaw University of Life Sciences, Warsaw, Poland

Bibliografia

  • Bonsdorff E., Rönnberg C, Aarnio K. 2002. Some ecological properties in relation to eutrophication in the Baltic Sea. Hydrobiologia, 475/476: 371-377.
  • Cymes I., Szejba D., Szymczyk S., Świtajska I., Olba-Zięty E. 2014. Influence of the change of soil use type to the water quality in drainage systems near Lidzbark Warmiński. Inż. Ekol., 37: 91-99. (in Polish) DOI: 10.12912/2081139X.20
  • Enell M., Fejes, J. 1995. The nitrogen load to the Baltic Sea: Present situation, acceptable future load and suggested source reduction. Water Air Soil Pollut., 85: 877-882.
  • Gentry L.E., David M.B., Royer T.V., Mitchell C.A., Starks K.M. 2007. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. J. Environ. Qual., 36: 408-415.
  • Glińska-Lewczuk K, Burandt P. 2011. Effect of river straightening on the hydrochemical properties of floodplain lakes: Observations from the Łyna and Drwęca Rivers, N Poland. Ecol. Eng., 37: 786-795.
  • Grabińska B., Koc J., Glińska-Lewczuk K. 2005. Seasonal export of nitrate nitrogen from agricultural- forested catchments. J. Elem., 10(2): 277-288. (in Polish)
  • Ilnicki P. 2014. Emissions of nitrogen and phosphorus into rivers from agricultural land–selected controversial issues. J. Water Land Develop., 23(1): 31-40.
  • Karczmarczyk A., BUS A. 2014. Testing of reactive materials for phosphorus removal from water and wastewater – comparative study. Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam., 46(1): 57-67.
  • King K.W., Williams M.R., Marae M.L., Fausey N.R., Frankenberger J., Smith D.R., Kleinman P.J,
  • Brown L.C. 2015. Phosphorus transport in agricultural subsurface drainage: a review. J. Environ. Qual., 44(2):467-85.
  • Kladivko E.J., Van Scoyoc G.E., Monke E.J., Oates K.M., Pask W. 1991. Pesticide and nutrient movement into subsurface tile drains on a silt loam soil in Indiana. J. Environ. Qual., 20: 264-270.
  • Kladivko E.J., Grochulska J., Turco R.F., Van Scoyoc G.E., Eigel J.D. 1999. Pesticide and nitrate transport into subsurface tile drains of different spacings. J. Environ. Qual., 28: 997-1004.
  • Kladivko E.J., Frankenberger J.R., Jaynes D.B., Meek D.W., Jenkinson B.J., Fausey N.R. 2004. Nitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system. J. Environ. Qual., 33: 1803-1813.
  • Koc J., Solarski K. 2006. The effect of reclamation systems on washing nitrogen and phosphorus out of agriculturally used catchments. Water - Environment - Rural Areas, 6(1): 195-205. (in Polish)
  • Koc J., Solarski K., Rochwerger A. 2007. Effect of a land reclamation system on the volume and seasonality of nitrate runoff from croplands. J. Elem., 12(2): 121-133. (in Polish)
  • Koc J., Koc-Jurczyk J., Solarski K. 2009. Scale and dynamics of nitrogen outflow in water from rural areas. Zesz. Nauk. P-W O/PTIE i O/PTG Rzeszów, 11: 121-128. (in Polish)
  • Kramers G., Holden N.M., Brenan F., Green S., Richards K.G. 2012. Water content and soil type effects on accelerating leaching after slurry application. Vadoze Zone J., 11(1). DOI: 10.2136/vzj2011.0059
  • Köhne J.M., Horts H.G. 2005. Spatial and temporal dynamics of preferential bromide movements towards tile drain. Vadose Zone J., 4: 79-88.
  • Lipiński J. 2003. Drainage of mineral soils and the natural environment. Wiad. Melior., 46(2): 74-76. (in Polish)
  • Liu Z., Song X., Jiang L., Lin H., Xu Y., Gao X., Zheng F., Tan D., Wang M., Shi J., Shen Y. 2012. Strategies for managing soil nitrogen to prevent nitrate-n leaching in intensive agriculture system, soil health and land use management. Hernandez Soriano M.C. (ed.), ISBN: 978-953-307-614-0
  • Nitrate, cadmium reduction method (0.4 to 30.0 mg/L). 2014. http://pl.hach.com/nitraver-5- azotany-test-kuwetowy-0-3-30-mg-l-no-sub-3-sub-n/product-downloads?id=24929760559&- callback=qs
  • Phosphorus, reactive, PhosVer 3 method (0.02 to 3.00 mg/L). 2014. http://pl.hach.com/opakowania- poduszkowe-sproszkowanego-reagenta-fosforanow-0-02-2-50-mg-l-po-sub-4-sub/product- downloads?id=24929760578&callback=qs
  • Popek Z., Wasilewicz M., Bańkowska A., Boczoń A. 2014. Seasonal changeabilty of water outflow and biogen loads from the Wielka Struga drainage basin to Zdworskie Lake. Monografie Komitetu Gospodarki Wodnej PAN, 20(2): 341-354. (in Polish)
  • Pulikowski K., Czyzyk F., Paweska K., Strzelczyk M. 2012. Share of nitrate nitrogen in the total nitrogen content in waters outflowing from a catchment with agricultural use. Infrastructure and Ecology of Rural Areas, 3/I: 155-165. (in Polish)
  • Rafałowska M. 2007. Influence of an agricultural farm on the effluent of phosphorus by a drainage network. Proc. ECOpole, 1(1/2): 221-225. (in Polish)
  • Rönnberg C., Bonsdorff E. 2004. Baltic Sea eutrophication: Area-specific ecological consequences. Hydrobiologia, 514: 227-241.
  • Sapek A. 2008. Phosphorus fertilization and its environmental consequences. Water-Environment- Rural Areas 8(2b): 127-137. (in Polish)
  • Sapek A. 2010. Polish agriculture and the protection of water quality, especially water of the Balitc Sea. Water-Environment-Rural Areas, 10(1): 175-200. (in Polish)
  • Smith V.H., Schindler D.W. 2009. Eutrophication science: Where do we go from here? Trends Ecol. Evol., 24: 201-207.
  • Svenbäck A., Ulén B., Etana A. 2014. Mitigation of phosphorus leaching losses via subsurface drains from a cracking marine clay soil. Agric., Ecosyst. Environ., 184: 124-134.
  • Szejba D., Bajkowski S., Pietraszek Z. 2010. The capabilities of ultrasonic meters utilization for flow measurements in drainage pipelines. In: Hydrology in engineering and water management. B. Więzik (ed.) T. 1, Committee of Environmental Engineering Monograph Polish Academy of Science, 68: 439-449. (in Polish)
  • Szejba D., Bajkowski S., Pietraszek Z. 2011. The outflow measurement under the conditions of drainage pipe submergence. Adv. Agric. Sci. Probl. Issues, 564: 263-271. (in Polish)
  • Szejba D., Cymes I., Szatyłowicz J., Szymczyk S. 2009. An impact of drainage system on soil water conditions at Lidzbark Warmiński experimental site. Biologia, 64/3: 565-569. DOI: 10.2478/s11756-009-0110-y
  • Szymczyk S. 2010. Influence of the type of soil dewatering and land use on the dynamics of concentrations and volume of nitrogen discharged from agricultural areas. J. Elem., 15(1): 189-211.
  • Vagstad N., Jansons V., Loigu E., Deelstra J. 2000. Nutrient losses from agricultural areas in the Gulf of Riga drainage basin. Ecol. Eng., 14: 435-441.
  • Withers P.J., Neal C., Jarvie H.P., Doody D.G. 2014. Agriculture and eutrophication: Where do we go from here? Sustainability, 6(9): 5853-5875.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b310d599-effc-4cc8-96ea-52dcc8d0900f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.