PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 68 | 1 |

Tytuł artykułu

Bioactive compounds of Pseudoalteromonas sp. IBRL PD4.8 inhibit growth of fouling bacteria and attenuate biofilms of Vibrio alginolyticus FB3

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Biofouling is a phenomenon that describes the fouling organisms attached to man-made surfaces immersed in water over a period of time. It has emerged as a chronic problem to the oceanic industries, especially the shipping and aquaculture fields. The metal-containing coatings that have been used for many years to prevent and destroy biofouling are damaging to the ocean and many organisms. Therefore, this calls for the critical need of natural product-based antifoulants as a substitute for its toxic counterparts. In this study, the antibacte-rial and antibiofilm activities of the bioactive compounds of Pseudoalteromonas sp. IBRL PD4.8 have been investigated against selectedfouling bacteria. The crude extract has shown strong antibacterial activity against five fouling bacteria, with inhibition zones ranging from 9.8 to 13.7mm and minimal inhibitory concentrations of 0.13 to 8.0mg/ml. Meanwhile, the antibiofilm study has indicated that the extract has attenuated the initial and pre-formed biofilms of Vibrio alginolyticus FB3 by 45.37±4.88% and 29.85±2.56%, respectively. Moreover, micrographs from light and scanning electron microscope have revealed extensive structural damages on the treated biofilms. The active fraction was fractionated with chromatographic methods and liquid chromatography-mass spectroscopy analyses has further disclosed the presence of a polyunsaturated fatty acid 4,7,10,13-hexadecatetraenoic acid (C₁₆H₂₄O₂). Therefore, this compound was suggested asa potential bioactive compound contributing to the antibacterial property. In conclusion, Pseudoalteromonas sp. IBRL PD4.8 is a promising source as a natural antifouling agent that can suppress the growth of five fouling bacteria and biofilms of V.alginolyticus FB3.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

68

Numer

1

Opis fizyczny

p.21-33,fig.,ref.

Twórcy

autor
  • Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
autor
  • Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
autor
  • Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
  • Fisheries Research Institute (FRI), Penang, Malaysia

Bibliografia

  • Abu Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact. 2011;10(1):74.doi:10.1186/1475-2859-10-74 Medline
  • Acevedo MS, Puentes C, Carreño K, León JG, Stupak M, García M, Pérez M, Blustein G. Antifouling paints based on marine natural products from Colombian Caribbean. Int Biodeterior Biodegradation. 2013;83:97–104. doi:10.1016/j.ibiod.2013.05.002
  • Bavya M, Mohanapriya P, Pazhanimurugan R, Balagurunathan R. Potential bioactive compound from marine actinomycetes against biofouling bacteria. Indian J Geomarine Sci. 2011;40(4):578–582.
  • Ben Abdallah F, Lagha R, Said K, Kallel H, Gharbi J. Detection of cell surface hydrophobicity, biofilm and fimbirae genes in Salmonella isolated from Tunisian clinical and poultry meat. IranJ Public Health. 2014;43(4):423–431. Medline
  • Bernbom N, Ng YY, Kjelleberg S, Harder T, Gram L. Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity. Appl Environ Microbiol. 2011;77(24):8557–8567. doi:10.1128/AEM.06038-11 Medline
  • Braddy RF Jr. No more tin, what now for fouling control. J Pro-tective Coating and Linings. 2000;5(6):42–46.
  • Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo Å, Adams DR. The development of a marine natural product-based antifouling paint. Biofouling. 2003;19(sup1) Suppl:197–205.doi:10.1080/0892701031000061778 Medline
  • Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by syner-gistic interactions in multispecies biofilms. Appl Environ Microbiol.2006;72(6):3916–3923.doi:10.1128/AEM.03022-05 Medline
  • Busetti A, Shaw G, Megaw J, Gorman S, Maggs C, Gilmore B.Marine-derived quorum-sensing inhibitory activities enhance theantibacterial efficacy of tobramycin against Pseudomonas aerugi­nosa. Mar Drugs. 2015;13(1):1–28.doi:10.3390/md13010001 Medline
  • Cai W, De La Fuente L, Arias CR. Biofilm formation by the fishpathogen Flavobacterium columnare: development and parameters affecting surface attachment. Appl Environ Microbiol. 2013;79(18): 5633–5642. doi:10.1128/AEM.01192-13 Medline
  • Cartron ML, England SR, Chiriac AI, Josten M, Turner R, Rauter Y, Hurd A, Sahl HG, Jones S, Foster SJ. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58(7): 3599–3609. doi:10.1128/AAC.01043-13 Medline
  • Cheng HR, Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett. 2006;28(1):55–59.doi:10.1007/s10529-005-4688-z Medline
  • Davey ME, O’toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64(4):847–867. doi:10.1128/MMBR.64.4.847-867.2000 Medline
  • Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Micro-biol Biotechnol. 2010;85(6):1629–1642.doi:10.1007/s00253-009-2355-3 Medline
  • Desbois AP. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov. 2012;7(2):111–122. doi:10.2174/157489112801619728 Medline
  • Fitridge I, Dempster T, Guenther J, de Nys R. The impact and control of biofouling in marine aquaculture: a review. Biofouling. 2012;28(7):649–669. doi:10.1080/08927014.2012.700478 Medline
  • Floerl O, Sunde LM, Bloecher N. Potential environmental risks associated with biofouling management in salmon aquaculture. Aquacult Environ Interact. 2016;8:407–417. doi:10.3354/aei00187
  • Franks A, Egan S, Holmström C, James S, Lappin-Scott H, Kjelleberg S. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colo-nization. Appl Environ Microbiol. 2006;72(9):6079–6087.doi:10.1128/AEM.00559-06 Medline
  • Galbraith H, Miller TB. Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol. 1973;36(4): 659–675. doi:10.1111/j.1365-2672.1973.tb04151.x Medline
  • Georgel P, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath S, Hoebe K, Du X, Rutschmann S, Jiang Z, et al. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect Immun. 2005;73(8):4512–4521.doi:10.1128/IAI.73.8.4512-4521.2005 Medline
  • Guardiola FA, Cuesta A, Meseguer J, Esteban MA. Risks of using antifouling biocides in aquaculture. Int J Mol Sci. 2012;13(2):541–1560. doi:10.3390/ijms13021541 Medline
  • Haslbeck EG, Bohlander G. Microbial biofilm effects on drag-lab and field. In: Proceedings of the 1992 Ship Production Symposium, 2–4 September 1992. New Orleans Hyatt Regency, New Orleans, Louisiana.
  • Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y.Purification and characterization of antibacterial substances pro-duced by a marine bacterium Pseudoalteromonas haloplanktis strain. J Appl Microbiol. 2008;105(5):1672–1677.doi:10.1111/j.1365-2672.2008.03878.x Medline
  • Iqbal F, Usup G, Ahmad A. Anti-biofilm activity of Pseudoaltero­monas flavipulchra SktPp1 against Serratia marcescens SMJ-11. In: Conference Proceedings of the 2015 UKM FST Postgraduate Colloquium, 15–16 April 2015. Universiti Kebangsaan Malaysia, Malaysia.Isnansetyo A, Kamei Y. MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus.Antimicrob Agents Chemother. 2003;47(2):480–488.doi:10.1128/AAC.47.2.480-488.2003 Medline
  • Iwata H, Tanabe S, Mizuno T, Tatsukawa R. High accumulation of toxic butyltins in marine mammals from Japanese coastal waters.Environ Sci Technol. 1995;29(12):2959–2962.doi:10.1021/es00012a011 Medline
  • Jiang P, Li J, Han F, Duan G, Lu X, Gu Y, Yu W. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One. 2011;6(4):e18514.doi:10.1371/journal.pone.0018514 Medline
  • Jung JE, Pandit S, Jeon JG. Identification of linoleic acid, a main component of the n-hexane fraction from Dryopteris crassirhizoma, as an anti-Streptococcus mutans biofilm agent. Biofouling. 2014; 30(7):789–798. doi:10.1080/08927014.2014.930446 Medline
  • Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs. 2011;34(9):737–751. doi:10.5301/ijao.5000027 Medline
  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 2004; 230(1):13–18. doi:10.1016/S0378-1097(03)00856-5 Medline
  • Kim W, Kim Y, Kim J, Nam BH, Kim DG, An C, Lee J, Kim P, Lee H, Oh JS, et al. Liquid chromatography-mass spectrometery-based rapid secondary-metabolite profiling of marine Pseudoalte­romonas sp. M2. Mar Drugs. 2016;14(1):24.doi:10.3390/md14010024 Medline
  • Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M.The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology. 2005;151(11):3589–3602.doi:10.1099/mic.0.27954-0 Medline
  • Kwon KK, Lee HS, Jung S-Y, Yim J-H, Lee J-H, Lee HK. Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho, Korea. J Microbiol. 2002;40(4):260–266.
  • Lade H, Paul D, Kweon JH. Quorum quenching mediated appro-aches for control of membrane biofouling. Int J Biol Sci. 2014;10(5): 550–565. doi:10.7150/ijbs.9028 Medline
  • Lewandowski Z, Beyenal H. Fundamentals of biofilm research. 2014. Boca Raton (Florida): CRC Press. p.1–61.
  • Lewis K. Persister Cells. Annu Rev Microbiol. 2010;64(1):357–372. doi:10.1146/annurev.micro.112408.134306 Medline
  • Limna Mol VP, Raveendran TV, Parameswaran PS. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int Biodeterior Biodegradation. 2009;63(1):67–72. doi:10.1016/j.ibiod.2008.07.001
  • Liu Y, Zhao H. Predicting synergistic effects between compounds through their structural similarity and effects on transcriptomes. Bioinformatics. 2016;32(24):3782–3789.doi:10.1093/bioinformatics/btw509 Medline
  • Martínez-Luis S, Ballesteros J, Gutiérrez M. Antibacterial consti-tuents from the octoral associated bacterium Pseudoalteromonassp. Rev Latinoam Quím. 2011;39(1-2):75–83.Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–199.doi:10.1146/annurev.micro.55.1.165 Medline
  • Mitova M, Tutino ML, Infusini G, Marino G, De Rosa S. Exocellular peptides from Antarctic psychrophile Pseudoaltero­monas haloplanktis. Mar Biotechnol (NY). 2005;7(5):523–531. doi:10.1007/s10126-004-5098-2 Medline
  • Murado MA, Vázquez JA. Biphasic toxicodynamic features ofsome antimicrobial agents on microbial growth: a dynamic mathe-matical model and its implications on hormesis. BMC Microbiol. 2010;10:220. Medline
  • Neu TR. Significance of bacterial surface-active compounds ininteraction of bacteria with interfaces. Microbiol Rev. 1996;60(1): 151–166. Medline
  • Nikaido H. Molecular basis of bacterial outer membrane per-meability revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656. doi:10.1128/MMBR.67.4.593-656.2003 Medline
  • Nikolić M, Vasić S, Djurdjevic J, Stefanović O, Čomić L. Anti-bacterial and anti-biofilm activity of ginger (Zingiber officinale(Roscoe)) ethanolic extract. Kragujevac J Sci. 2014;36(36):129–136.doi:10.5937/KgJSci1436129N
  • Nithya C, Pandian SK. The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp. Arch Micro- biol. 2010;192(10):843–854.doi:10.1007/s00203-010-0612-6 Medline
  • Nor Afifah S, Darah I, Sharifah Radziah MN, Wan Norhana MN, Ahmad I. Inhibition of fouling bacteria by the marine epiphytes from selected locations in Malaysia. Mal J Sci. 2017;36(1):17–21.
  • O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54(1):49–79.doi:10.1146/annurev.micro.54.1.49 Medline
  • Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66(2):86–92. Medline
  • Park NH, Choi JS, Hwang SY, Kim YC, Hong YK, Cho K, Choi I, Choi IS. Antimicrobial activities of stearidonic and gamma-linolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteria. Bot Stud (Taipei, Taiwan). 2013; 54(1):39. doi:10.1186/1999-3110-54-39 Medline
  • Parsons JB, Yao J, Frank MW, Jackson P, Rock CO. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J Bacteriol. 2012; 194(19):5294–5304. doi:10.1128/JB.00743-12 Medline
  • Pearson JP, Van Delden C, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol. 1999;181(4):1203–1210. Medline
  • Ponnusamy K, Kappachery S, Thekeettle M, Song JH, Kweon JH.Anti-biofouling property of vanillin on Aeromonas hydrophila initialbiofilm on various membrane surfaces. World J Microbiol Biotechnol.2013;29(9):1695–1703. doi:10.1007/s11274-013-1332-2 Medline
  • Poole K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 2012;20(5): 227–234.doi:10.1016/j.tim.2012.02.004 Medline
  • Qi SH, Xu Y, Xiong HR, Qian PY, Zhang S. Antifouling and anti- bacterial compounds from a marine fungus Cladosporium sp. F14. World J Microbiol Biotechnol. 2009;25(3):399–406. doi:10.1007/s11274-008-9904-2
  • Rao D, Webb JS, Holmström C, Case R, Low A, Steinberg P, Kjelleberg S. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl Environ Microbiol. 2007;73(24):7844–7852. doi:10.1128/AEM.01543-07 Medline
  • Sailer FC, Meberg BM, Young KD. beta-Lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett. 2003;226(2):245–249.doi:10.1016/S0378-1097(03)00616-5 Medline
  • Santhakumari S, Kannappan A, Pandian SK, Thajuddin N, Rajendran RB, Ravi AV. Inhibitory effect of marine cyanobacterial extract on biofilm formation and virulence factor production of bacterial pathogens causing vibriosis in aquaculture. J Appl Phycol. 2016;28(1):313–324. doi:10.1007/s10811-015-0554-0
  • Schultz MP, Swain GW. The influence of biofilms on skin friction drag. Biofouling. 2000;15(1-3):129–139. doi:10.1080/08927010009386304 Medline
  • Shin SY, Bajpai VK, Kim HR, Kang SC. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. Lebensm Wiss Technol. 2007;40(9):1515–1519. doi:10.1016/j.lwt.2006.12.005
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729. doi:10.1093/molbev/mst197 Medline
  • Thenmozhi R, Nithyanand P, Rathna J, Karutha Pandian S.Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol. 2009;57(3):284–294.doi:10.1111/j.1574-695X.2009.00613.x Medline
  • Townsin RL. The ship hull fouling penalty. Biofouling. 2003; 19(sup1) Suppl:9–15.doi:10.1080/0892701031000088535 Medline
  • Wang L-L, Johnson EA. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl Environ Microbiol. 1992 Feb; 58(2):624–629. Medline
  • Watanabe S, Nagamatsu N, Yokoo K, Kawakami Y. The augmen-tation in frictional resistance due to slime. J Kansai Soc Nav Arch. 1969;131:45–51.
  • Waturangi DE, Bunardi YA, Magdalena S. Antibiofilm activity of bacteria isolated from marine environment in Indonesia against Vibrio cholerae. Res J Microbiol. 2011;6(12):926–930.doi:10.3923/jm.2011.926.930
  • Xu Y, Miao L, Li XC, Xiao X, Qian PY. Antibacterial and anti-larval activity of deep-sea bacteria from sediments of the West Pacific Ocean. Biofouling. 2007;23(2):131–137.doi:10.1080/08927010701219323 Medline
  • Zeng Z, Guo XP, Cai X, Wang P, Li B, Yang JL, Wang X.Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling. Microb Biotechnol. 2017;10(6):1718–1731.doi:10.1111/1751-7915.12773 Medline
  • Zeng Z, Guo XP, Li B, Wang P, Cai X, Tian X, Zhang S, Yang JL, Wang X. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Appl Microbiol Biotechnol. 2015;99(23):10127–10139. doi:10.1007/s00253-015-6865-x Medline
  • Zheng L, Chen H, Han X, Lin W, Yan X. Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World J Microbiol Biotechnol. 2005;21(2):201–206.doi:10.1007/s11274-004-3318-6

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b2e55dc5-d0ee-4762-b4b6-ad8a059dbbf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.