Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |
Tytuł artykułu

Classification of regions with endemic diseases based on trace element concentrations in groundwater

Warianty tytułu
Języki publikacji
This study measured trace elements and assessed fluoride levels in groundwater in Azerbaijan. We investigated endemic diseases in regions of Azerbaijan using the aforementioned data. Geographic regions were classified as an endemic region or not by using a support vector machine (SVM). Classification accuracy for the SVM classifier was determined to be 76.92%.
Słowa kluczowe
Opis fizyczny
  • Department of Environmental Health Okan University and Department of Environmental Engineering Azerbaijan Khazar University, Turkey
  • Kocaeli University, Faculty of Medicine, Kocaeli, Turkey
  • 1. LU S.Y., ZHANG H.M., SOJINU S.O., LIU G.H., ZHANG J.Q., NI H.G. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China. Environ Monit Assess. 187 (1), 4220. doi: 10.1007/s10661-014-4220-9. Epub 2014 Dec 17.
  • 2. FRANCESCONI K.A., KUEHNELT D., KOKARNIG S,. RABER G. Elemental speciation analysis in human health assessment Journal of Trace Elements in Medicine and Biology, 27 (1), 5, 2013.
  • 3. JANE L. Drinking Water Intake Evaluations-a Review for Developed and Developing Countries Journal of Trace Elements in Medicine and Biology, 27 (1), 29, 2013.
  • 4. ŁAGOCKA R., SIKORSKA-BOCHIŃSKA J., NOCEŃ I., JAKUBOWSKA K., GÓRA M., BUCZKOWSKARADLIŃSKA J. Influence of the mineral composition of drinking water taken from surface water intake in enhancing regeneration processes in mineralized human teeth tissue Pol. J. Environ. Stud. 20 (2), 412, 2011.
  • 5. BLANES P.S, BUCHHAMER E.E, GIMÉNEZ M.C. Natural contamination with arsenic and other trace elements in groundwater of the Central-West region of Chaco, Argentina.J Environ Sci Health A Tox Hazard Subst Environ Eng. 46 (11), 1197, 2011.
  • 6. TOKATLI B.C., KÖSE E., ÇIÇEK A., Groundwater quality of Türkmen mountain,Turkey Pol.J.Environ.Stud. 22 (4), 1197, 2013.
  • 7. JIMOH W.L.O. AND SHOLADOYE Q.O. Trace elements as ındıcators of qualıty of drınkıng water ın Offa metropolıs, Kwara state, Nıgerıa Bayero Journal of Pure and Applied Sciences, 4 (2), 103, 2011.
  • 8. AINCHIL K. Fluoride variations in groundwater of an area in Buenos Aires Province, Argentina. Environmental Geology 44, 86, 2003.
  • 9. FRENCKEN J.E. (editor). Endemic Fluorosis in developing countries, causes, effects and possible solutions. NIPGTNO, Leiden, The Netherlands, Publication number 91.082, 1992.
  • 10. DISSANAYEKE C.B. The fluoride problem in the groundwater of Sri Lanka-environmental management and health. Intl. J. Environ. Studies. 19, 195, 1991.
  • 11. ADEBAYO O.L., SHALLIE P.D., SALAU B.A. AJANI E.O, A. ADENUGA G. Comparative study on the influence of fluoride on lipid peroxidation and antioxidants levels in the different brain regions of well-fed and protein undernourished rats” Journal of Trace Elements in Medicine and Biology 27, 370, 2013.
  • 12. LIU L., ZHANG Y., GU H., ZHANG K., MA L. Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo, Biol Trace Elem Res. 164, 64, 2015.
  • 13. LATHA S., AMBIKA S.R., PRASAD S.J. Fluoride contamination. status of ground water in Karnataka. Curr. Sci. 6, 730, 1999.
  • 14. BA Y., ZHANG H., WANG G., WEN S., YANG Y., ZHU J., REN L., YANG R., ZHU C., LI C., CHENG X., CUI L. Association of Dental Fluorosis with Polymorphisms of Estrogen Receptor Gene in Chinese Children, Biol Trace Elem Res. 143, 87, 2013.
  • 15. MUSTAPHA A., ARIS A.Z. Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Pol. J. Environ. Stud. 21 (5), 2012.
  • 16. GUMUS E., KILIC N., SERTBAS A., UCAN O.N. Evaluation of face recognition techniques using PCA, wavelets and SVM, Expert Systems with Applications 37 (9), 6404, 2010.
  • 17. TARTAR A., KILIC N., AKAN A. Classification of Pulmonary Nodules by Using Hybrid Features, Computational and mathematical methods in medicine, vol. Article ID 148363, 2013.
  • 18. MERT A., KILIÇ N., AKAN A., Evaluation of bagging ensemble method with time-domain feature extraction for diagnosing of arrhythmia beats, Neural Computing and Applications 24 (2), 317, 2014.
  • 19. MERT A., KILIÇ N., AKAN A. An improved hybrid feature reduction for increased breast cancer diagnostic performance, Biomedical Engineering Letters 4 (3), 285, 2014.
  • 20. VAPNIK V. The nature of statistical lerning theory. (New York, Springer-Verlag). 1995.
  • 21. YEH Y.R., HUANG C.H., WANG Y.C.F., Heterogeneous Domain Adaptation and Classification by Exploiting the Correlation Subspace, IEEE Transactions on Image Processing, 23 (5), 2014.
  • 22. MARSICO M., NAPPI M., RICCIO D., WECHSLER H., Robust Face Recognition for Uncontrolled Pose and Illumination Changes, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43 (1), 2013.
  • 23. DAI H.L. Imbalanced Protin Data Classification Using Ensemble FTM-SVM, IEEE Transactions on NanoBioscience, 14 (4), 2015.
  • 24. ANGADI U.B., VENKATESULU M., Structural SCOP Superfamily Level Classification Using Unsupervised Machine Learning, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (2), 2012.
  • 25. CAI D., HE X., ADAPTIVE M. Experimental Design for Text Categorization, IEEE Transactions on Knowledge and Data Engineering, 20 (4), 2012.
  • 26. KUMAR M.A., GOPAL M. An Investigation on Linear SVM and its Variants for Text Categorization, International Conference onMachine Learning and Computing, 2010.
  • 27. NIAF E., FLAMARY R., ROUVIERE O., LARTIZIEN C., CANU S. Kernel-Based Learning From Both Qualitative and Quantitative Labels: Application to Prostate Cancer Diagnosis Based on Multiparametric MR Imaging, IEEE Transactions on Image Processing, 23 (3), 2014.
  • 28. ALVAREZ I., GORRIZ J.M., RAMIREZ J., SALASGONZALEZ D., LOPEZ M., PUNTONET C.G., SEGOVIA F. Alzheimers diagnosis using eigenbrains and support vector machines, Electronics Letters, 45 (7), 2009.
  • 29. WANG Y., CROOKES D., ELDIN O.S., WANG S., HAMILTON P., DIAMOND J. Assisted Diagnosis of Cervical Intraepithelial Neoplasia (CIN), IEEE Journal of Selected Topics in Signal Processing, 3 (1), 2009.
  • 30. BARAKAT N., BRADLEY A.P., BARAKAT M.N.H. Intelligible Support Vector Machines for Diagnosis of Diabetes Mellitus, IEEE Transactions on Information Technology in Biomedicine, 14 (4), 2010.
  • 31. POLAT K., GUNEŞ S. Breast cancer diagnosis using least square support vector machine, Digital Signal Processing, 17 (4), 694, 2007.
  • 32. GREENBERG A.E., CLESCERI L.S, EATON A.D. Standarts methods for the examination water and wastewater. (Washington, American Public Health Association) 1992.
  • 33. BURGES C. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery. 2, 1, 1998.
  • 34. VAPNIK, V. An overview of statistical learning theory. IEEE Transaction on Neural Network. 10, 989, 1999.
  • 35. CHANG C.C., LIN C.J. LIBSVM: a library for support vector machines. software available at, 2001.
  • 36. UBEYLI E.D. Combining eigenvector methods and support vector machines for detectin variability of Doppler ultrasound signals. Computer methods and programs in biomedicine, 86, 181, 2007.
  • 37. SAHMUROVA A., ONGEN A., ELMASLAR E., BALKAYA N. Determination of Micro-elements in Surface Water Resources. Journal of Residuals Science & Technology, 4 (3), July 2007.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.