Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 53 | 2 |
Tytuł artykułu

Acclimatization of European beech (Fagus sylvatica L.) leaves first year after planting into different light conditions of young spruce stand

Treść / Zawartość
Warianty tytułu
Języki publikacji
The study presents the results of investigation on reaction of beech (Fagus sylvatica L.) leaves observed next year after planting seedlings in different positions in a young spruce stand located in upper mountain conditions. The methods of chemical analyses and assessments of chlorophyll fluorescence were applied with the aim to evaluate a course of leaf adaptation. In the young spruce stand located in the Karkonoše Mts, bare root beech seedlings after cultivation in full light were planted into three main positions to spruce trees (under the crown, within crown perimeter and in stand gaps). Next year after planting, the total biomass, leaf nutrient content and chlorophyll fluorescence parameters were evaluated. The beech trees planted under spruce (Picea sp.) crowns had significantly lower specific leaf mass and the mean leaf area was decreasing from shade to sun. Differences in nutrient contents were not significant between the treatments. We found significantly higher values of minimal (F0) and the maximum fluorescence (Fm) as well as of the maximum quantum yield of PSII photochemistry (Fv/Fm) in the leaves of beeches growing under the spruce crown. Significant differences among treatments were found also in the courses of the values of maximum fluorescence yield Y(II) and nonphotochemical quenching (NPQ). Our study indicated that bud forming processes are only partially responsible for physiological properties of beech leaves evaluated next year after planting. Photosynthetic performance is also influenced by actual growing conditions. A great part of acclimation occurs already in the first year after planting (change of the light conditions). We speculate that this phase of gradual acclimation of the assimilation apparatus can be one of the reasons of physiological weakening of the plant after planting to different light environment.
Opis fizyczny
  • Forestry and Game Management Research Institute, Forest Research Station at Opocno, Na Olive 550, 517 73 Opocno, Czech Republic
  • Balcar V., Kacálek D. 2008. European beech planted into spruce stands exposed to climatic stresses in mountain areas. Austrian Journal of Forest Science, 125 (1), 27– 38.
  • Balcar V., Slodičák M., Kacálek D., Navrátil P. 2007. Metodika postupů přeměn porostů náhradních dřevin v imisních oblastech. Lesnický průvodce 3. Výzkumný ústav lesního hospodářství a myslivosti, v.v.i., Jíloviště, 34 pp.
  • Ball M.C., Butterworth J.A., Roden J.S., Christian R., Egerton J.G. 1994. Applications of chlorophyll fluorescence to forest ecology. Australian Journal of Plant Physiology, 22, 311– 319.
  • Björkman O., Demming B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plant of diverse origins. Planta, 170, 489– 504.
  • Borghetti M. 1997. Ecophysiological responses of Fagus sylvatica s eedlings t o c hanging l ight c onditions. II. The interaction of light environment and soil fertility on seedling physiology, Physiologia Plantarum, 101, 124– 134.
  • Cochard H., Lemoine D., Dreyer E. 1999. The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L. Plant, Cell and Environment, 22, 101– 108.
  • Curt T., Coll L., Prévosto B., Balandier P., Kunstler G. 2005. Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition. Annals of Forest Science, 62 (1), 51– 60.
  • Einhorn K.S., Rosenqvist E., Leverenz J.W. 2004. Photoinhibition in seedlings of Fraxinus and Fagus under natural light conditions: implications for forest regeneration? Oecologia, 140, 241– 251.
  • Epron D., Liozon R., Thiebaut B. 1995. Photosynthetic characteristics of leaves of the first and second growth flushes of beech saplings (Fagus sylvatica L.). In: Photosynthesis: from light to biosphere (ed.: P. Mathis). Volume V. Proceedings of the Xth International Photosynthesis Congress, Montpellier, France, 20– 25 August 1995, 817– 820.
  • Hladká D., Čaňová I. 2005. Morphological and physiological parameters of beech leaves (Fagus sylvatica L.) in research demonstration object Poľana. Journal of Forest Science, 51, 168– 176.
  • Hobza P., Mauer O., Pop M. 2008. Current use of European beech (Fagus sylvatica L.) for artificial regeneration of forests in the air-polluted areas. Journal of Forest Science, 54 (4), 139– 149.
  • Johnson J.D., Tognetti R., Michelozzi M., Pinzauti S., Minotta G., Borghetti M. 1997. Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. II. The interaction of light environment and soil fertility on seedling physiology. Physiologia Plantarum, 101, 124– 134.
  • Kautsky H., Hirsch A. 1931. Neue Versuche zur Kohlensäureassimilation. Die Naturwissenschaften, 19 (48), 964– 964.
  • Kazda M., Salzer J., Schmid, I., von Wrangell P. 2004. Importance of mineral nutrition for photosynthesis and growth of Quercus petraea, Fagus sylvatica and Acer pseudoplatanus planted under Norway spruce canopy. Plant and Soil, 264 (1/2), 25– 34.
  • Kopinga J., van den Burg J. 1995. Using soil and folia analysis to diagnose the nutritional status of urban trees. Journal of Arboricilture, 21 (1), 17– 24.
  • Küppers M., Schneider H. 1993. Leaf gas exchange of beech (Fagus sylvatica L .) s eedlings in lightflecks: effects of fleck length and leaf temperature in leaves grown in deep and partial shade. Trees, 7, 160– 168.
  • Lichtenthaler H.K, Babani F., Langsdorf G., Buschmann C. 2000. Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. Photosynthetica, 38 (4), 521– 529.
  • Lichtenthaler H.K. 1981. Adaptation of leaves and chloroplasts to high quanta fluence rates. In: Photosynthesis (ed.: G. Akoyunoglou). Vol. VI. Balaban International Science Service, Philadelphia, 273– 287.
  • Madsen P. 1995. Effects of soil water content, fertilization, light, weed competition and seedbed type on natural regeneration of beech Fagus sylvatica. Forest Ecology and Management, 72, 251– 264.
  • Meier I.C., Leuschner Ch., Hertel D. 2005. Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient. Plant Ecology, 177, 99– 112.
  • Mészáros I., Tóth R.V., Veres S. 1998. Photosynthetic responses to spatial and diurnal variations of light conditions in seedlings of three deciduous tree species. Photosynthesis: mechanisms and effects. Volume V. Proceedings of the XIth International Congress on Photosynthesis, Budapest, Hungary, 17– 22 August 1998, 4081– 4084.
  • Mohammed G.H., Binder W.D., Gillies S.L. 1995. Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation. Scandinavian Journal of Forest Research, 10 (4), 383– 410.
  • Mohammed G.H., Zarco-Tejada P., Miller J.R. 2003. Applications of chlorophyll fluorescence in forestry and ecophysiology. In: Practical applications of chlorophyll fluorescence in plant biology (eds.: J.R. Dell, P.M.A. Toivonen). Boston, Kluwer Academic Publishers, 79– 124.
  • Ögren E. 1991. Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components. Planta, 184, 538– 544.
  • Reynolds P.E., Frochot H. 2003. Photosynthetic acclimation of beech seedlings to full sunlight following a major windstorm event in France. Annals of Forest Science, 60, 701– 709.
  • Robakowski P., Antczak P. 2008. Ability of silver fir and European beech saplings to acclimate photochemical processes to the light environment under different canopies of trees. Polish Journal of Ecology, 56 (1), 3– 16.
  • Roháček K. 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40 (1), 13– 29.
  • Rosenquist E., van Kooten O. 2003. Chlorophyll fluorescence: a general description and nomenclature. In: Practical applications of chlorophyll fluorescence in plant biology (eds.: J.R. Dell, M.A.P. Toivonen). Boston, Kluwer Academic Publishers, 31– 79.
  • Rosenquist E., Wingsle G., Orgen E. 1991. Photo-inhibition of photosynthesis in intact willow leaves in response to moderate changes in light and temperature. Physiologia Plantarum, 83, 390– 396.
  • Schreiber U. 2004. Pulse-amplitude modulation (PAM) fluorometry and saturation pulse metod: an overview. In: Chlorophyll a fluorescence: a signature of photosynthesis (ed.: G.C. Papageorgiou). Dordrecht, Springer, 279– 319.
  • Špulák O. 2008. Assimilation apparatus variability of beech transplants grown in variable light conditions of blue spruce shelter. Journal of Forest Science, 54 (11), 491– 496.
  • Tognetti R., Johnson J.D., Michelozzi M. 1997. Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. I. Interactions between photosynthetic acclimation and photoinhibition during simulated canopy gap formation. Physiologia Plantarum, 101, 115– 123.
  • Tognetti R., Johnson J.D., Michelozzi M. 1997. Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. I. Interactions between photosynthetic acclimation and photoin hibition during simulated canopy gap formation. Physiologia Plantarum, 101, 115– 123.
  • Walz H. 2003. Imaging-pam chlorophyll fluorometer. Instrument description and information for users. Effeltrich, Heinz Walz GmbH, 134.
  • Welander T., Ottosson B. 1998. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. Forest Ecology and Management, 107, 117– 126.
  • Wyka T., Robakowski P., Żytkowiak R. 2007. Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance. Tree Physiology, 27 (9), 1293– 1306.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.