Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |
Tytuł artykułu

Spectroscopic studies of the quality of fatty acid methyl esters derived from waste cooking oil

Warianty tytułu
Języki publikacji
Biodiesel is a very attractive, biodegradable, renewable, and virtually nontoxic form of fuel. It is derived through base-catalysed transesterification of vegetable oils or animal fats. Analysis of biodiesel has become relevant, since the higher quality of the fuel is a key factor in commercialisation and market acceptance. The analytical methods employed are being constantly improved to meet this requirement. The most popular techniques for analysis of biodiesel include mainly chromatography and molecular spectroscopy. FTIR infrared spectroscopy is one of the most important spectroscopic techniques. The article presents the results of UV-Vis absorption spectroscopy and FTIR infrared spectroscopy analysis employed for investigating methyl esters of higher fatty acids obtained with laboratory methods from selected sunflower and rapeseed oils and waste animal fats provided by a slaughterhouse. Commercial methyl esters were included in the analyses for comparison. In all samples, the contents of free glycerol, methanol, esters, and linolenic acid methyl ester in FAME were determined mainly to facilitate the spectroscopic analysis. The results of the investigations conducted with the aforementioned methods clearly indicate that the analysed WCO esters can be successfully used as potential industrial-scale biofuels.
Słowa kluczowe
Opis fizyczny
  • Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Department of Power Engineering and Transportation, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland
  • Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin
  • Department of Cell Biology, Institute of Biology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
  • 1. CHEN G., YING M., LI W. Enzymatic conversion of waste cooking oils into alternative fuel – biodiesel. Applied biochemistry and biotechnology. 132, 911, 2006.
  • 2. ZHANG W.B. Review on analysis of biodiesel with infrared spectroscopy. Renewable and Sustainable Energy Reviews. 16, 6048, 2012.
  • 3. TARABET L., LOUBAR K., LOUNICI M.S., S. HANCHI, TAZEROUT M., Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine. BioMed Research International. 2012, 8, 2012.
  • 4. LI M., ZHENG Y., CHEN Y., ZHU X. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresource technology. 154, 345, 2014.
  • 5. TALEBIAN-KIAKALAIEH A., AMIN N.A.S., MAZAHERI H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy. 104, 683, 2013.
  • 6. ANAND P., SAXENA R.K. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1, 3-propanediol production from Citrobacter freundii. New Biotechnology. 29, 199, 2012.
  • 7. SIDDIQUI N., AHMAD A. Infrared Spectroscopic Studies On Edible And Medicinal Oils. International Journal Of Science, Environment And Technology. 2, 1297, 2013.
  • 8. WIJESEKARA R., NOMURA N., SATO S., MATSUMURA M. Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1, 3-propanediol production by Clostridium butyricum. Journal of chemical technology and biotechnology. 83, 1072, 2008.
  • 9. Echeverri D.A., Cardeño F., Rios L.A. Glycerolysis of soybean oil with crude glycerol containing residual alkaline catalysts from biodiesel production. Journal of the American Oil Chemists’ Society. 88, 551, 2011.
  • 10. HAVLÍK P., SCHNEIDER U.A., SCHMID E., BÖTTCHER H., FRITZ S., SKALSKÝ R., AOKI K., DE CARA S., KINDERMANN G., KRAXNER F. Global land-use implications of first and second generation biofuel targets. Energy Policy. 39, 5690, 2011.
  • 11. YAAKOB Z., MOHAMMAD M., ALHERBAWI M., ALAM Z., SOPIAN K. Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews. 18, 184, 2013.
  • 12. PIMENTEL D., MARKLEIN A., TOTH M.A., KARPOFF M.N., PAUL G.S., MCCORMACK R., KYRIAZIS J., KRUEGER T. Food versus biofuels: environmental and economic costs. Human ecology. 37, 1, 2009.
  • 13. PIASECKA A., KRZEMIŃSKA I., TYS J. Physical methods of microalgal biomass pretreatment. Int. Agrophys. 28, 341, 2014.
  • 14. PÉREZ-VÁZQUEZ A., ÁVILA-RESÉNDIZ C., VALDÉS-RODRÍGUEZ O.A., GALLARDO-LÓPEZ F., GARCÍA-PÉREZ E., RUIZ-ROSADO O. Effect of the soil water content on Jatropha seedlings in a tropical climate. International Agrophysics. 27, 351, 2013.
  • 15. PHAN A.N., PHAN T.M. Biodiesel production from waste cooking oils. Fuel. 87, 3490, 2008.
  • 16. GURUNATHAN B., RAVI A. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst. Bioresource technology. 188, 124, 2015.
  • 17. Zhang Y., Dube M., McLean D., Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource technology. 89, 1, 2003.
  • 18. WEN Z., YU X., TU S.-T., YAN J., DAHLQUIST E. Biodiesel production from waste cooking oil catalyzed by TiO 2–MgO mixed oxides. Bioresource technology. 101, 9570, 2010.
  • 19. PATEL M.J., PATEL T.M., RATHOD G.R. Performance Analyis of CI Engine Using Diesel and Waste Cooking Oil Blend.
  • 20. SHEINBAUM C., BALAM M.V., ROBLES G., DE LARREA S.L., MENDOZA R. Biodiesel from waste cooking oil in Mexico City. Waste Management & Research. 0734242X15590471, 2015.
  • 21. MOHAMMADSHIRAZI A., AKRAM A., RAFIEE S., KALHOR E.B. Energy and cost analyses of biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews. 33, 44, 2014.
  • 22. SZMIGIELSKI M., PIEKARSKI W., ANDREJKO D., SLASKA-GRZYWNA B., MASLOWSKI A., ZAJAC G., SAGAN A., JASKIEWICZ T., RACHANCZYK I. Recovery of fatty substances from post-frying waste materials by extraction with hexane. Przemysl Chemiczny. 93, 649, 2014.
  • 23. PATIL P., DENG S., RHODES J.I., LAMMERS P.J. Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes. Fuel. 89, 360, 2010.
  • 24. RABELO S.N., FERRAZ V.P., OLIVEIRA L.S., FRANCA A.S. FTIR analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. International Journal of Environmental Science and Development. 6, 964, 2015.
  • 25. CHATZIFRAGKOU A., DIETZ D., KOMAITIS M., ZENG A.P., PAPANIKOLAOU S. Effect of biodiesel-derived waste glycerol impurities on biomass and 1, 3-propanediol production of Clostridium butyricum VPI 1718. Biotechnology and bioengineering. 107, 76, 2010.
  • 26. PYLE D.J., GARCIA R.A., WEN Z. Producing docosahexaenoic acid (DHA)-rich algae from biodieselderived crude glycerol: effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry. 56, 3933, 2008.
  • 27. VLACHOS N., SKOPELITIS Y., PSAROUDAKI M., KONSTANTINIDOU V., CHATZILAZAROU A., TEGOU E. Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta. 573, 459, 2006.
  • 28. AULT A.P., POMEROY R. Quantitative investigations of biodiesel fuel using infrared spectroscopy: An instrumental analysis experiment for undergraduate chemistry students. Journal of Chemical Education. 89, 243, 2011.
  • 29. MAHAMUNI N.N., ADEWUYI Y.G. Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel− biodiesel blends, and blend adulteration with soy oil. Energy & Fuels. 23, 3773, 2009.
  • 30. LAPUERTA M., HERREROS J.M., LYONS L.L., GARCÍA-CONTRERAS R., BRICEÑO Y. Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel. 87, 3161, 2008.
  • 31. ASHBY R.D., SOLAIMAN D.K., STRAHAN G.D. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly (3-hydroxybutyrate) biopolymers. Journal of the American Oil Chemists’ Society. 88, 949, 2011.
  • 32. ATHALYE S.K., GARCIA R.A., WEN Z. Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. Journal of Agricultural and Food Chemistry. 57, 2739, 2009.
  • 33. O’DONNELL S., DEMSHEMINO I., YAHAYA M., NWANDIKE I., OKORO L. A Review on the Spectroscopic Analysis of Biodiesel. European International Journal of Science and Technology. 2, 137, 2013.
  • 34. ZHANG J., CHEN S., YANG R., YAN Y., Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel. 89, 2939, 2010.
  • 35. SPEIGHT J.G., Handbook of petroleum product analysis, John Wiley & Sons, 2015.
  • 36. MATWIJCZUK A., GÓRECKI A., KAMIŃSKI D., MYŚLIWA-KURDZIEL B., FIEDOR L., NIEWIADOMY A., KARWASZ G.P., GAGOŚ M. Influence of Solvent Polarizability on the Keto-Enol Equilibrium in 4-[5-(naphthalen-1-ylmethyl)-1, 3, 4-thiadiazol-2-yl] benzene-1, 3-diol. Journal of fluorescence. 25, 1867, 2015.
  • 37. GAGOŚ M., MATWIJCZUK A., KAMIŃSKI D., NIEWIADOMY A., KOWALSKI R., KARWASZ G.P. Spectroscopic studies of intramolecular proton transfer in 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole. Journal of fluorescence. 21, 1, 2011.
  • 38. ALISKE M.A., ZAGONEL G.F., COSTA B.J., VEIGA W., SAUL C.K. Measurement of biodiesel concentration in a diesel oil mixture. Fuel. 86, 1461, 2007.
  • 39. IOB A., BUENAFE R., ABBAS N.M. Determination of oxygenates in gasoline by FTIR. Fuel. 77, 1861, 1998.
  • 40. OLIVEIRA J.S., MONTALVÃO R., DAHER L., SUAREZ P.A., RUBIM J.C. Determination of methyl ester contents in biodiesel blends by FTIR-ATR and FTNIR spectroscopies. Talanta. 69, 1278, 2006.
  • 41. LIMA S.M., IZIDA T., FIGUEIREDO M.D.S., ANDRADE L.H.D.C., DEL RÉ P.V., JORGE N., BUBA E., ARISTONE F., Analysis of biodiesel and frying vegetable oils by means of FTIR photoacoustic spectroscopy. The European Physical Journal Special Topics. 153, 535, 2008.
  • 42. YANG F., HANNA M.A., SUN R. Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for biofuels. 5, 1, 2012.
  • 43. HIDAWATI E.N., SAKINAH A.M. Treatment of glycerin pitch from biodiesel production. International Journal of Chemical and Environmental Engineering. 2, 2011.
  • 44. BOSHUI C., YUQIU S., JIANHUA F., JIU W., JIANG W. Effect of cold flow improvers on flow properties of soybean biodiesel. Biomass and bioenergy. 34, 1309, 2010.
  • 45. ARIES E., DOUMENQ P., ARTAUD J., ACQUAVIVA M., BERTRAND J. Effects of petroleum hydrocarbons on the phospholipid fatty acid composition of a consortium composed of marine hydrocarbon-degrading bacteria. Organic Geochemistry. 32, 891, 2001.
  • 46. KLOFUTAR B., GOLOB J., Microorganisms in diesel and in biodiesel fuels. Acta chimica slovenica. 54, 744, 2007.
  • 47. Sun L.M., Li M., Ma C., Li P., Li J. Preparation and evaluation of lubricity additives for low sulfur diesel fuel. Energy & Fuels. 2016.
  • 48. TSENG C.H., WANG N., Fast analysis of fats, oils and biodiesel by FT-IR. Lipid Technology. 19, 39, 2007.
  • 49. AL NUR M., ALI M., ALI A., IMTENAN S., MASJUKI H.H., VARMAN M., ARBAB M.I., SAJJAD H., FATTAH I.M.R., ABEDIN M.J., HASIB A.S.M., 10th International Conference on Mechanical Engineering, ICME 2013Emission and Performance Improvement Analysis of Biodiesel-diesel Blends with Additives. Procedia Engineering. 90, 472, 2014.
  • 50. MO X., LOTERO E., LU C., LIU Y., GOODWIN J.G. A Novel Sulfonated Carbon Composite Solid Acid Catalyst for Biodiesel Synthesis. Catalysis Letters. 123, 1, 2008.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.