PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 4 |
Tytuł artykułu

The significance of gamma-and lambda-dislocations in transient states of phyllotaxis: how to get more from less - sometimes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In some plants, developmental changes of phyllotaxis are so frequent that the whole spectrum of phyllotactic patterns becomes available for investigation and thus many unknown subtleties of phyllotaxis come to light. Among these, Magnolia acuminata is the most prominent. In a series of experiments performed in silico with application of a simple geometric model of phyllotaxis, we were able to confront the empirical data on phyllotactic transitions occurring in magnolia flowers with the results of computer simulations. They revealed that in addition to the ratio between the sizes of plant organs, the history of developing pattern was also important, especially for the direction of ontogenetic changes. The parameters of size tolerance and vertical tolerance in positioning a new element in the first available space, brought the effects of simulations closer to the real patterns. They helped especially to resolve the enigma of multiplication of parastichies (γ-dislocations) observed sometimes during determined growth of magnolia floral axes. We conclude that ontogenetic changes in phyllotaxis result mainly from changing sizes of organs in the course of development and that the changes do not always occur with mathematical accuracy.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
85
Numer
4
Opis fizyczny
Article 3532 [16p.], fig.,ref.
Twórcy
  • Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
autor
  • Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
Bibliografia
  • 1. Tenne R, Margulis L, Genut M, Hodes G. Polyhedral and cylindrical structures of tungsten disulphide. Nature. 1992;360(6403):444–446. https://doi.org/10.1038/360444a0
  • 2. Mogilevsky G, Chen Q, Kleinhammes A, Wu Y. The structure of multilayered titania nanotubes based on delaminated anatase. Chem Phys Lett. 2008;460:517–520. https://doi.org/10.1016/j.cplett.2008.06.063
  • 3. Armstrong AR, Armstrong G, Canales J, Bruce PG. Nanotubes with the TiO2-B structure. Chemical Communications. 2005;19:2454–2456. https://doi.org/10.1039/b501883h
  • 4. Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 2009;9:3137–3141. https://doi.org/10.1021/nl901260b
  • 5. Wang C, Liu S, Duan Y, Huang Z, Che S. Hard-templating of chiral TiO2 nanofibres with electron transition-based optical activity. Sci Technol Adv Mater. 2015;16:054206. https://doi.org/10.1088/1468-6996/16/5/054206
  • 6. Chrétien D, Metoz F, Verde F, Karsenti E, Wade RH. Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J Cell Biol. 1992;117:1031–1040. https://doi.org/10.1083/jcb.117.5.1031
  • 7. Davis DM, Sowinski S. Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol. 2008;9:431–436. https://doi.org/10.1038/nrm2399
  • 8. Mathur J, Mammone A, Barton KA. Organelle extensions in plant cells. J Integr Plant Biol. 2012;54:851–867. https://doi.org/10.1111/j.1744-7909.2012.01175.x
  • 9. Krenz B, Guo TW, Kleinow T. Stromuling when stressed! Acta Soc Bot Pol. 2014;83:325–329. https://doi.org/10.5586/asbp.2014.050
  • 10. Szpak M, Zagórska-Marek B. Phyllotaxis instability – exploring the depths of first available space. Acta Soc Bot Pol. 2011;80:279–284. https://doi.org/10.5586/asbp.2011.043
  • 11. Geyler HT. Über den Gefässbündelverlauf in den Laubblattregionen der Coniferen. Jahrbücher für Wissenschaftliche Botanik. 1867;6:55–208.
  • 12. Fujita T. Statistische Untersuchung über die Zahl der konjugierten Parastichen bei den schraubigen Organstellungen. Botanical Magazine Tokyo. 1938;52:425–433. https://doi.org/10.15281/jplantres1887.52.425
  • 13. Namboodiri KK, Beck CB. A comparative study of the primary vascular system of conifers. I. Genera with helical phyllotaxis. Am J Bot. 1968;55:447–457. https://doi.org/10.2307/2440574
  • 14. Banasiak A, Zagórska-Marek B. Signals flowing from mature tissues to shoot apical meristem affect phyllotaxis in coniferous shoot. Acta Soc Bot Pol. 2006;75(2):113–121. https://doi.org/10.5586/asbp.2006.014
  • 15. Gola E. Phyllotaxis diversity in Lycopodium clavatum L. and Lycopodium annotinum L. Acta Soc Bot Pol. 1996;65:235–247. https://doi.org/10.5586/asbp.1996.036
  • 16. Szostak M, Zagórska-Marek B. The new patterns of phyllotaxis in juniper. In: Proceedings of the 51 Conference of Polish Botanical Society; 1998 Sep 15–19; Gdańsk, Poland. Warsaw: Polish Botanical Society; 1998. p. 481.
  • 17. Yin X, Lacroix C, Barabé D. Phyllotactic transitions in seedlings: the case of Thuja occidentalis. Botany. 2011;89:387–396. https://doi.org/10.1139/B11-027
  • 18. Zagórska-Marek B. Phyllotaxic diversity in Magnolia flowers. Acta Soc Bot Pol. 1994;63:117–137. https://doi.org/10.5586/asbp.1994.017
  • 19. Zagórska-Marek B. Magnolia w naturze, eksperymencie i… komputerze. In: Dobierzewska-Mozrzymas E, Jezierski A, editors. Przyroda i cywilizacja. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego; 2010. p. 39–70. (Seminaria Interdyscyplinarne; vol 14).
  • 20. Zagórska-Marek B. Magnolia flower – the living crystal. Magnolia. 2011;89:11–21.
  • 21. Zagórska-Marek B, Szpak M. Virtual phyllotaxis and real plant model cases. Funct Plant Biol. 2008;35:1025–1033. https://doi.org/10.1071/FP08076
  • 22. Kwiatkowska D. Ontogenetic changes of phyllotaxis in Anagallis arvensis L. Acta Soc Bot Pol. 1995;64:319–325. https://doi.org/10.5586/asbp.1995.041
  • 23. Palauqui J, Laufs P. Phyllotaxis: in search of the golden angle. Curr Biol. 2011;21:R502–R504. https://doi.org/10.1016/j.cub.2011.05.054
  • 24. Leyser HMO, Furner IJ. Characterisation of three shoot apical meristem mutants of Arabidopsis thaliana. Development. 1992;116:397–403.
  • 25. Clark SE, Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development. 1993;119:397–418.
  • 26. Clark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development. 1995;121:2057–2067.
  • 27. Laux T, Mayer KFX, Berger J, Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996;122:87–96.
  • 28. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100:635–644. https://doi.org/10.1016/S0092-8674(00)80700-X
  • 29. Greyson RI, Walden DB. The ABPHYL syndrome in Zea mays. I. Arrangement, number and size of leaves. Am J Bot. 1972;59(5):466–472. https://doi.org/10.2307/2441527
  • 30. Greyson RI, Walden DB, Hume JA, Erickson RO. The ABPHYL syndrome in Zea mays. II. Patterns of leaf initiation and the shape of the shoot meristem. Can J Bot. 1978;56(13):1545–1550. https://doi.org/10.1139/b78-183
  • 31. Jackson D, Hake S. Control of phyllotaxy in maize by the abphyl1 gene. Development. 1999;126(2):315–323.
  • 32. Meicenheimer RD. Change in Epilobium phyllotaxy during reproductive transition. Am J Bot. 1982;69:1108–1118.
  • 33. Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell. 1990; 63:1311–1322. https://doi.org/10.1016/0092-8674(90)90426-F
  • 34. Carpenter R, Copsey L, Vincent C, Doyle S, Magrath R, Coen E. Control of flower development and phyllotaxy by meristem identity genes in Antirrhinum. Plant Cell. 1995;7:2001–2011. https://doi.org/10.1105/tpc.7.12.2001
  • 35. Erbar C, Leins P. Zur Spirale in Magnolien-Blüten. Beitrage zur Biologie der Pflanzen. 1982;56:225–241.
  • 36. Xu F, Rudall PJ. Comparative floral anatomy and ontogeny in Magnoliaceae. Plant Syst Evol. 2006;258(1–2):1–15. https://doi.org/10.1007/s00606-005-0361-1
  • 37. Taylor GI. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc R Soc Lond A Math Phys Sci. 1934;145(855):362–387. https://doi.org/10.1098/rspa.1934.0106
  • 38. Frank FC. Crystal dislocations – elementary concepts and definitions. Philosophical Magazine. 1951;42:809–819. https://doi.org/10.1080/14786445108561310
  • 39. Nabarro FRN. Theory of crystal dislocations. Oxford: Clarendon Press; 1967.
  • 40. Zagórska-Marek B. Phyllotaxis triangular unit: phyllotactic transitions as the consequence of apical wedge disclinations in a crystal-like pattern of the units. Acta Soc Bot Pol. 1987;56(2):229–255. https://doi.org/10.5586/asbp.1987.024
  • 41. Zagórska-Marek B, Wiss D. Dislocations in the repetitive unit patterns of biological systems. In: Nation JB, editor. Formal descriptions of developing systems. Manoa, HI: Kluwer Academic Publishers; 2003. p. 99–117. https://doi.org/10.1007/978-94-010-0064-2_7
  • 42. Williams MH, Green PB. Sequential scanning electron microscopy of growing plant meristem. Protoplasma. 1988;147:77–79. https://doi.org/10.1007/BF01403879
  • 43. Adler I. A model of contact pressure in phyllotaxis. J Theor Biol. 1974;45:1–79. https://doi.org/10.1016/0022-5193(74)90043-5
  • 44. Hofmeister W. Allgemeine Morphologie der Gewächse. Leipzig: Engelmann; 1868.
  • 45. Snow M, Snow R. Experiments on phyllotaxis. I. The effects of isolating a primordium. Philos Trans R Soc Lond B. 1932;221:1–43. https://doi.org/10.1098/rstb.1932.0001
  • 46. Snow M, Snow R. Minimum areas and leaf determination. Proc R Soc B. 1952;139(897):545–566. https://doi.org/10.1098/rspb.1952.0034
  • 47. Zagórska-Marek B. Phyllotactic patterns and transitions in Abies balsamea. Can J Bot. 1985; 63(10):1844–1854. https://doi.org/10.1139/b85-259
  • 48. Church AH. On the relation of phyllotaxis to mechanical laws. London: Williams & Norgate; 1904. https://doi.org/10.5962/bhl.title.57125
  • 49. Mirabet V, Besnard F, Vernoux T, Boudaoud A. Noise and robustness in phyllotaxis. PLoS Comput Biol. 2012;8(2):e1002389. https://doi.org/10.1371/journal.pcbi.1002389
  • 50. Besnard F, Refahi Y, Morin V, Merteaux B, Brunoud G, Rozier F, et al. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature. 2014;505:417–421. https://doi.org/10.1038/nature12791
  • 51. Schoute JC. Beiträge zur Blattstellungslehre. Récueil des Travaux Botaniques Néerlandais. 1913;10:153–235.
  • 52. Steeves TA, Sussex IM. Patterns in plant development. 2nd ed. Cambridge: Cambridge University Press; 1989. https://doi.org/10.1017/CBO9780511626227
  • 53. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, et al. Regulation of phyllotaxis by polar auxin transport. Nature. 2003;426(6964):255–260. https://doi.org/10.1038/nature02081
  • 54. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P. A plausible model of phyllotaxis. Proc Natl Acad Sci USA. 2006;103(5):1301–1306. https://doi.org/10.1073/pnas.0510457103
  • 55. Hotton S, Johnson V, Wilbarger J, Zwieniecki K, Atela P, Golé C, et al. The possible and the actual in phyllotaxis: bridging the gap between empirical observations and iterative models. Plant Growth Regul. 2006;25:313. https://doi.org/10.1007/s00344-006-0067-9
  • 56. Douady S, Couder Y. Phyllotaxis as a dynamical self organizing process Part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J Theor Biol. 1996;178(3):275–294. https://doi.org/10.1006/jtbi.1996.0025
  • 57. Smith R, Prusinkiewicz P, Kuhlemeier C. Inhibition fields for phyllotactic pattern formation: a simulation study. Can J Bot . 2006;84(11):1635–1649. https://doi.org/10.1139/b06-133
  • 58. Itoh JI, Nagato Y. A mutation associated with phyllotaxy and leaf blade-sheath boundary in rice. Rice Genet Newsl. 1998;15:90–93.
  • 59. Liao WF, Xia NH. Phyllotaxis of vegetative shoots, lamina rotation and their systematic implication in Magnoliaceae. Nord J Bot. 2007;25:199–205. https://doi.org/10.1111/j.2007.0107-055X.00058.x
  • 60. Stevens PF. Angiosperm Phylogeny Website [Internet]. 2016 [cited 2016 Dec 27]. Available from: http://www.mobot.org/MOBOT/research/APweb/
  • 61. Lorenz EN. Atmospheric predictability as revealed by naturally occurring analogues. Journal of the Atmospheric Sciences. 1969;26:636–646. https://doi.org/10.1175/1520-0469(1969)26%3C636:APARBN%3E2.0.CO;2
  • 62. Hernandez LF, Palmer JH. Regeneration of the sunflower capitulum after cylindrical wounding of the receptacle. Am J Bot. 1988;75(9):1253–1261. https://doi.org/10.2307/2444447
  • 63. Intosalmi j, Manninen T, Ruohonen K, Linne M. Computational study of noise in a large signal transduction network. BMC Bioinformatics. 2011;12:252. https://doi.org/10.1186/1471-2105-12-252
  • 64. Stoeger T, Battich N, Pelkmans L. Passive noise filtering by cellular compartmentalization. Cell. 2016;164(6):1151–1161. https://doi.org/10.1016/j.cell.2016.02.005
  • 65. Deb Y, Marti D, Frenz M, Kuhlemeier C, Reinhardt D. Phyllotaxis involves auxin drainage through leaf primordia. Development. 2015;142:1992–2001. https://doi.org/10.1242/dev.121244
  • 66. Prasad K, Grigg SP, Barkoulas M, Yadav RK, Sanchez-Perez GF, Pinon V, et al. Arabidopsis PLETHORA transcription factors control phyllotaxis. Curr Biol. 2011;21:1123–1128. https://doi.org/10.1016/j.cub.2011.05.009
  • 67. Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B. Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proc Natl Acad Sci USA. 2012;110:1107–1112. https://doi.org/10.1073/pnas.1213497110
  • 68. Ljung, K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. https://doi.org/10.1242/dev.086363
  • 69. Bartlett ME, Thompson B. Meristem identity and phyllotaxis in inflorescence development. Front Plant Sci. 2014;5:508. https://doi.org/10.3389/fpls.2014.00508
  • 70. Larson PR. Development and organization of the primary vascular system in Populus deltoides according to phyllotaxy. Am J Bot. 1975;62(10):1084–1099. https://doi.org/10.2307/2442125
  • 71. Banasiak A. Putative dual pathway of auxin transport in organogenesis of Arabidopsis. Planta. 2011;233(1):49–61. https://doi.org/10.1007/s00425-010-1280-0
  • 72. Running MP, Meyerowitz EM. Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development. 1996;122:1261–1269.
  • 73. Luo D, Carpenter R, Vincent C, Copsey L, Coen E. Origin of floral asymmetry in Antirrhinum. Nature. 1996;383:794–799. https://doi.org/10.1038/383794a0
  • 74. Wróblewska M, Dołzbłasz A, Zagórska-Marek B. The role of ABC genes in shaping perianth phenotype in the basal angiosperm Magnolia. Plant Biol. 2016;18:230–238. https://doi.org/10.1111/plb.12392
  • 75. Battey NH, Lyndon RF. Changes in apical growth and phyllotaxis on flowering and reversion in Impatiens balsamina L. Ann Bot. 1984;54:553–567.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-b286626f-1944-4757-a578-7a516d82d944
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.