PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 4 |

Tytuł artykułu

Evaluation of the changes induced by gasification biochar in a peat-sand substrate

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Gasification biochar represents one of the biochar types tested for agricultural needs. The aim of this study was to clarify the physico-chemical and biological changes occurring in a peat-sand substrate amended with hardwood-derived gasification biochar in the rates of 2, 4 and 20 g l-1. The pH(H2O) of the substrate with 4 g l-1 and 20 g l-1 biochar was increased from 5.6 to 6.2 and 6.7, respectively. The testing of the substrate in the re- spirometry device showed that the increase in the biochar rate led to a decrease in the amount of CO2 evolved at the maximum pressure drop. The continuous decrease in pressure observed in the respirometry bottles filled with pure biochar allows explaining this effect by biochar sorption activity. Addition of 2 and 4 g l-1 biochar to the peat-sand substrate stimulated the growth of cucumbers in an 18-day pot vegetation experiment. An increase in the number of root tips and root volume with a decreasing average root diameter was shown in the presence of biochar. Stimulation of plant growth on the background of low rates of biochar requires a further study with emphasis on the specific combination of biochar, soil type, plant species, and climatic conditions.

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.471-478,fig.,ref.

Twórcy

autor
  • Institute of Microbiology and Biotechnology, University of Latvia, 4 Kronvalda Blvd., Riga, LV-1010, Latvia
autor
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., LV-1006 Riga, Latvia
autor
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., LV-1006 Riga, Latvia

Bibliografia

  • Angst T.E., Patterson C.J., Reay D.S., Anderson P., Peshkur T.A., and Sohi S.P., 2013. Biochar diminishes nitrous oxide and nitrate leaching from diverse nutrient sources. J. Environ. Quality, 43(2), 672-682.
  • Barrow C.J., 2012. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr., 34, 21-28.
  • Cayuela M.L., Sánchez-Monedero M.A., Roig A., Hanley K., Enders A., and Lehmann J., 2013. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Scientific Reports, 3, 1732, doi:10.1038/srep01732.
  • Černohlávková J., Jarkovský J., and Hofman J., 2009. Effects of fungicides mancozeb and dinocap on carbon and nitrogen mineralization in soils. Ecotoxicology Environ. Safety, 72, 80-85.
  • Chintala R., Mollinedo J., Schumacher T.E., Malo D.D., and Julson J.L., 2013. Effect of biochar on chemical properties of acidic soil. Archives Agronomy Soil Sci., DOI: 10.1080/03650340.2013.789870.
  • Cleary J., Roulet N.T., and Moore T.R., 2005. Greenhouse gas emissions from Canadian peat extraction 1990-2000: a lifecycle- analysis. Ambio, 34, 456-461, doi:10.1579/0044- 7447-34.6.456.
  • Dugan E., Verhoef A., Robinson S., and Sohi S., 2010. Bio-char from sawdust, maize stover and charcoal: impact on water holding capacities (WHC) of three soils from Ghana, in: Proc. 19th World Congress of Soil Science, Soil Solutions for a Changing World, August 1-6, Brisbane, Australia.
  • Dumroese R.K., Heiskanen J., Englund K., and Tervahauta A., 2011. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy, 35(5), 2018-2027.
  • Graber E.R., Harel Y.M., Kolton M., Cytryn E., Silber A., David D.R., Tsechansky L., Borenshtein M., and Elad Y., 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil, 337(1), 481-496.
  • Hass A., Gonzalez J.M., Lima I. M., Godwin H.W., Halvorson J.J., and Boyer D.G., 2012. Chicken manure biochar as liming and nutrient source for acid appalachian soil. J. Environ. Quality, 41(4), 1096-1106.
  • Johnson M.S., Hilbert I., and Jollymore A.J., 2012. Biochar as a substitute for peat in greenhouse growing media: soil water characteristics and carbon leaching dynamics. Book of Abstracts, AGU Fall meeting, December 3-7, San Francisco, USA.
  • Kolb S.E., Fermanich K.J., and Dornbush M.E., 2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. America J., 73(4), 1173-1181.
  • Kookana R.S., Sarmah A.K., Van Zwieten L., Krull E., and Singh B., 2011. Chapter three - Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances Agronomy, 112, 103-143.
  • Lehmann J., Gaunt J., and Rondon M., 2006. Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies Global Change, 11(2), 403-427.
  • Lehmann J. and Joseph S., 2009. Biochar for Environmental Management: Science and Technology. Earthscan, London, UK.
  • Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., and Crowley D., 2011. Biochar effects on soil biota. A review. Soil Biol. Biochem., 43(9), 1812-1836.
  • Liu X., Zhang A., Ji C., Joseph S., Bian R., Li L., Pan G., and Paz-Ferreiro J., 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil, DOI:10.1007/ s11104-013-1806-x.
  • Michel J.-C., 2010. The physical properties of peat: a key factor for modern growing media. Mires and Peat, http://www. mires-and-peat.net
  • Novak J.M., Lima I., Xing B., Gaskin J.W., Steiner C., Das K.C., Ahmedna M., Rehrah D., Watts D.W., Busscher W.J., and Schomberg H.H., 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals Environ. Sci., 3, 195-206.
  • Olszewski J.M., Lozano N., Haines C., Rice C.P., Ramirez M., and Torrents A., 2013. The effect of liming on antibacterial and hormone levels in wastewater biosolids. J. Environ. Sci. Health - Part A Toxic/Hazardous Substances Environ. Eng., 48(8), 862-870.
  • Reuschenbac P., Pagga U., and Strotmann U., 2003. A critical comparison of respirometric biodegradation tests based on OECD 301 and related test methods. Water Res., 37, 1571-1582.
  • Sadaka S.S., Richard T.L., Loecke T.D., and Liebman M., 2006. Determination of compost respiration rates using pressure sensors. Compost Sci. Utilization, 14(2), 124-131.
  • Sohi S.P., Krull E., Lopez-Capel E., and Bol R., 2010. A review of biochar and its use and function in soil. Advances Agronomy, 105, 47-82.
  • Stavi I., 2013. Biochar use in forestry and tree-based agro-ecosystems for increasing climate change mitigation and adaptation. Int. J. Sustainable Develop. World Ecology, 20(2), 166-181.
  • Steiner C. and Harttung T., 2014. Biochar as growing media additive and peat substitute. Solid Earth Discussions, 6, 1023-1035.
  • Steiner C., Glaser B., Teixeira W.G., Lehmann J., Blum W.E.H., and Zech W., 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutrition Soil Sci., 171(6), 893-899.
  • Telysheva G., Dobele G., Lebedeva G., Volpert A., Muter O., and Strikauska S., 2013. Biochar of different origin as an amendment for planted soil. Book of Abstracts, 2nd Nordic Biochar Seminar, February 14-15, Helsinki, Finland.
  • Tian Y., Sun X., Li S., Wang H., Wang L., Cao J., and Zhang L., 2012. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, 15-18.
  • Verheijen F.G.A., Jeffery S., Bastos A.C., van der Velde M., and Diafas I., 2009. Biochar Application to Soils - A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. EUR 24099 EN, Office for the Official Publications of the European Communities, Luxembourg.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b27f4449-3061-4c6b-ba35-c468afb5b21a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.