Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Hydrogen and methane production from Co-digestion of food waste and chicken manure

Warianty tytułu
Języki publikacji
The production of renewable energy from agro-food waste possesses a lot of advantages over conventional methods. This study aimed at enhancing the hydrogen and methane production from co-digestion of food waste and chicken manure by adding different inoculums: aeration tank sludge (ATS), return activated sludge (RAS) and palm oil mill effluent sludge (POME). One-stage anaerobic fermentation for hydrogen and methane production was carried out in a 150 mL serum bottle at 35ºC with initial pH of 7. The effects of different combination ratios (food waste and chicken manure) were also examined. The microbial community was determined using next-generation sequencing (NGS) of 16S ribosomal RNA technique. Based on the results, the co-digestion of food waste, chicken manure using a combination ratio of 50:50 (v/v) with RAS without heat treatment gave the highest biogas yield at 120.97 NmL/g COD. The highest percentages of hydrogen and methane produced were 53.35% and 52.85%, respectively. Clostridium sp. was detected in the biohydrogen production phase with methanogens responsible for biomethane production. Thus, the heat treatment of inoculums was seen as unsuitable for producing biomethane as it inhibits methanogens.
Słowa kluczowe
Opis fizyczny
  • Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia 2
  • Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Product (INTROP), Universiti Putra Malaysia, Selangor, Malaysia
  • 1. AZBAR N., LEVIN D.B. State of the Art and Progress in Production of Biohydrogen. Bentham Science Publishers, 2012.
  • 2. HIDALGO D., MARTIN-MARROQUIN J.M., NEITO P. Anaerobic Co-digestion of Agro-Food Waste Mixture in a Fed-Batch Basis. Environmental Technology, 37 (20), 2016.
  • 3. KANAT G. Municipal solid-waste management in Istanbul. Waste Management (New York, N.Y.), 30 (8-9), 2010.
  • 4. LUOSTARINEN S., LOGRÉN J., GRÖNROOS J., LEHTONEN H., PAAVOLA T. Lannan kestävä hyödyntäminen. MTT Raportti, 21, 2011.
  • 5. EL-MASHAD H.M., ZHANG R. Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101 (11), 2010.
  • 6. MSHANDETE A., KIVAISI A., RUBINDAMAYUGI M., MATTIASSON B. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology, 95 (1), 2004.
  • 7. NAYONO S.E., GALLERT C., WINTER J. Co-digestion of press water and food waste in a biowaste digester for improvement of biogas production. Bioresource Technology, 101 (18), 2010.
  • 8. YASIN N.H. M. Optimisation of Physical Parameters and Microbial Community Analysis of Bio-Hydrogen Production from Food Waste, 2011.
  • 9. APHA. Standard Methods for the Examination of Water & Wastewater. American Public Health Association, 2005.
  • 10. ZHANG M.-L., FAN Y.-T., XING Y., PAN C.-M., ZHANG G.-S.LAY J.-J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy, 31(4), 2007.
  • 11. YUSOF T.R.T. Methane Production from Co-Digestion of Poultry Manure and Food Waste, 2014.
  • 12. ABOUELENIEN F., NAMBA Y., KOSSEVA M.R., NISHIO N., NAKASHIMADA Y. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresource Technology, 159, 2014.
  • 13. IORTYER H.A., IBRAHIM J.S., KWAGHGER A. Effect of Mixing Ratio of Cattle and Piggery Dung on Biogas Generation. International Journal of Environment and Bioenergy 1 (3), 2012.
  • 14. FALAH F.B., QASAIMEH A., QASAIMEH M.R.A. Biogas Production Enhancement from Mixed Animal Wastes at Mesophilic Anaerobic Digestion, 2015.
  • 15. BOUALLAGUI H., TOUHAMI Y., BEN CHEIKH R., HAMDI M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40 (3-4), 2005.
  • 16. MISI S.N., FORSTER C.F. Batch co-digestion of multicomponent agro-wastes. Bioresource Technology, 80 (1), 2001.
  • 17. ASTALS S., ARISO M., GALÍ A., MATA-ALVAREZ J. Co-digestion of pig manure and glycerine: Experimental and modelling study. Journal of Environmental Management, 92 (4), 2011.
  • 18. LIU X., LI R., JI M., HAN L. Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: Substrate conversion and energy yield. Bioresource Technology, 146, 2013.
  • 19. ABOUELENIEN F., FUJIWARA W., NAMBA Y., KOSSEVA M., NISHIO N., NAKASHIMADA Y. Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource Technology, 101 (16), 2010.
  • 20. WAN S., SUN L., SUN J., LUO W. Biogas production and microbial community change during the Co-digestion of food waste with chinese silver grass in a singlestage anaerobic reactor. Biotechnology and Bioprocess Engineering, 18 (5), 2013.
  • 21. CHEN CHIU-YUE LIN, MIN-CHENG LIN C.-C. Acid - base enrichment enhances anaerobic hydrogen production process. Applied Microbiology and Biotechnology, 58 (2), 2002.
  • 22. LEE Y.J., MIYAHARA T., NOIKE T. Effect of iron concentration on hydrogen fermentation. Bioresource Technology, 80 (3), 2001.
  • 23. OKAMOTO M., MIYAHARA T., MIZUNO O., NOIKE T. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 41 (3), 2000.
  • 24. GINKEL S. VAN, SUNG S., LAY J.-J. Biohydrogen Production as a Function of pH and Substrate Concentration. Environmental Science & Technology, 35 (24), 2001.
  • 25. LOGAN B.E., OH S.-E., KIM I.S., VAN GINKEL S. Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environmental Science & Technology, 36 (11), 2002.
  • 26. UENO Y., HARUTA S., ISHII M., IGARASHI Y. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology, 57 (4), 2001.
  • 27. KAWAGOSHI Y., HINO N., FUJIMOTO A., NAKAO M., FUJITA Y., SUGIMURA S., FURUKAWA K. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. Journal of Bioscience and Bioengineering, 100 (5), 2005.
  • 28. ISMAIL I., HASSAN M.A., ABDUL RAHMAN N.A., SOON C.S. Thermophilic biohydrogen production from palm oil mill effluent (POME) using suspended mixed culture. Biomass and Bioenergy, 34 (1), 2010.
  • 29. LIU Z., LI Q., ZHANG C., WANG L., HAN B., LI B., XING X. Effects of operating parameters on hydrogen production from raw wet steam-exploded cornstalk and two-stage fermentation potential for biohythane production. Biochemical Engineering Journal 90, 2014.
  • 30. KARTHIKEYAN O.P., VISVANATHAN C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Reviews in Environmental Science and Bio/Technology, 12 (3), 2013.
  • 31. TABATABAEI M., ZAKARIA M.R., RAHIM R.A., WRIGHT A.G., SHIRAI Y., ABDULLAH N., HASSAN M.A. PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent. Electronic Journal of Biotechnology, 12 (3), 2009.
  • 32. PAN J., ZHANG R., ELMASHAD H., SUN H., YING Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. International Journal of Hydrogen Energy, 33 (23), 2008.
  • 33. VALDEZ-VAZQUEZ I., POGGI-VARALDO H. M. Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews, 13 (5), 2009.
  • 34. ALI SHAH F., MAHMOOD Q., MAROOF SHAH M., PERVEZ A., AHMAD ASAD S. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. The Scientific World Journal. 2014, 183752, 2014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.