1. Atkins, M., Walmsley, M.R. and Neale, J.R., 2010.: Integration potential of milk powder plants using conventional heat recovery options, Chem. Eng. Trans., 21, s. 997-1002.
2. Benali M., Amazouz M.: “Drying of vegetable starch solutions on inert particles: Quality and energy aspects”, Journal of Food Engineering, Volume 74, 2006, pp. 484-489.
3. Budin B., Mihelic-Bogdanic A., Filipan V.: Energy conservation using a recuperative drying process. Energy Convers. Mgmt Vol 37, No 9, 1996, pp. 1393-1399.
4. Conde M. R.: Energy conservation with tumbler drying in laundries. Applied Thermal Engineering Vol 17, No 12, 1997, pp. 1163- 1172.
5. Didukh V., Kirchuk R.: Optimization of immovable material layer at drying. TEKA Kom. Mot. Energ. Roln. - OL PAN 7 2007, pp. 81–85.
6. Flink J.: Energy analysis in dehydration processes. Food Technology, Volume 31, 1977, pp. 77-84.
7. Ho J.C., Chou S. K., Mujundar A.S., Hawlader M.N.A., Chua K.J.: An optimization framework for drying of heat- sensitive products. Applied Thermal Engineering Vol 21, 2001, pp. 1779- 1798.
8. Ivanova, D.; Andonov, K.: “Analytical and experimental study of combined fruit and vegetable dryer”. Energy Conversion and Management, Volume: 42, Issue: 8, May, 2001, pp. 975-983
9. Jech J., Angelovič M., Poničan J., Židek B, Žitňák M.: Evaluation of drying-plant schief cbs 16-4 power parameters at drying maize. TEKA Kom. Mot. Energ. Roln. - OL PAN 6A 2006, pp. 92–100.
10. Koyuncu, T.; Pinar, Y.; Lule, F.: “Convective drying characteristics of azarole red (Crataegus monogyna Jacq.) and yellow (Crataegus aronia Bosc.) fruits”, Journal of Food Engineering, Volume: 78, Issue: 4, February, 2007, pp. 1471-1475.
11. Koyuncu, T.; Serdar, U.; Tosun, I.: “Drying characteristics and energy requirement for dehydration of chestnuts (Castanea sativa Mill.)”, Journal of Food Engineering, Volume: 62, Issue: 2, April, 2004, pp. 165-168.
12. Mujumdar, A. S.: “An overview of innovation in industrial drying: current status and R&D needs”, Transport in Porous Media Volume, 66, Issue: 1-2, January 2007, pp. 3 – 18.
13. Pabis S.: Theoretical models of vegetable drying by convection, Transp Porous Med (2007) 66: s. 77-87.
14. Prvulovic, S., Tolmac, D. and Lambic, M.: Determination of energetic characteristics of convection drying place on pneumatic transportation material, Journal of Process Technique, Vol. 1. 70-74, 2001.
15. Ratti C.: “Hot air and freeze-drying of high value foods: a review”, Journal of Food Engineering, Volume 49, 2001, pp. 311-319.
16. Rudy S.: Energy consumption in the freeze - and convection-drying of garlic. TEKA Kom. Mot. Energ. Roln. - OL PAN 9 2009, pp. 259–266.
17. Savoie P., Joannis H.: Bidirectional drying of baled hay with air recirculation and cooling. Canadian Biosystems Engineering 48 2006: 3.53-3.59.
18. Sokhansanj, S. Wood H.: Simulation of thermal and disinfestation characteristics of a forage dryer. Drying Technology 9 1991: 643-656.
19. Soylemez M.S.: Optimum heat pump in drying systems with waste heat recovery. Journal of Food Engineering 74 (2006) 292–298.
20. Tippayawong N., Tantakitti C., Thavornun S., Peerawanitkul V.: Energy conservation in drying of peeled longan by forced convection and hot air recirculation. Biosystems Engineering 104 (2009), pp. 199-204.