PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Factors controlling decomposition rates of needle litter across a chronosequence of Chinese pine (Pinus tabuliformis Carr.) forests

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigated how factors underlying local spatial variations controlled needle litter decomposition across a chronosequence of Chinese pine (Pinus tabuliformis Carr.) forests. Litterbag methods were used to measure changes in litter chemistry and the mass loss of leaf litter, as well as selective biotic and abiotic factors during the growing seasons (May-October) in 2013 and 2014 in a set of fully replicated P. tabuliformis Carr. secondary forest stands that differ in age in northern China. During the two growing seasons the path analysis identified the litter lignin/N ratio, soil microbial metabolic quotient (qCO₂), soil diversity of fungal assemblages (SFD), and soil-water content (SWC) as dominant controlling factors in needle litter decomposition, collectively explaining 76.9% of the total variation in mass loss across the entire age sequence. Litter lignin/N and soil qCO₂ had the greatest negative effects on the k value, followed by weaker positive effects of SFD and SWC. Our findings indicate that forest stand age has a great influence on needle litter decomposition by determining litter quality, with soil microbial activity and local environmental factors being secondary drivers in needle litter decomposition across a chronosequence of Chinese pine (Pinus tabuliformis Carr.) forests.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.91-102,fig.,ref.

Twórcy

autor
  • College of Forestry, Beijing Forestry University Beijing, China
  • Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
autor
  • College of Forestry, Beijing Forestry University Beijing, China
autor
  • College of Forestry, Beijing Forestry University Beijing, China

Bibliografia

  • 1. MOORE J.C., BERLOW E.L., COLEMAN D.C., DE RUITER P.C., DONG Q., HASTINGS A., JOHNSON N.C., MCCANN K.S., MELVILLE K., MORIN P.J., NADELHOFFER K., ROSEMOND A.D., POST D.M., SABO J.L., SCOW K.M., VANNI M.J., WALL D.H., Detritus, trophic dynamics and biodiversity. Ecol. Lett., 7, 584, 2004.
  • 2. HOORENS B., DAVID C., RIEN A., Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species. Oecologia, 162, 479, 2010.
  • 3. BERG B., DAVEY M., DE MARO A., EMMETT B., FAITURI M., SASWAT S., JOHANSSON M.B., LIU C., MCCLAUGHERTY C., NORELL L., RUTIGLIANO F., VESTERDAL L., DE VIRZO S.A. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100, 57, 2010.
  • 4. APONTE C., GARCIA L.V., MARANON T., Tree Species Effect on Litter Decomposition and Nutrient Release in Mediterranean Oak Forests Changes Over Time. Ecosystems, 15, 1204, 2012.
  • 5. CHENG F., PENG X.B., ZHAO P., YUAN J., ZHONG C., CHENG Y.L., CUI C., ZHANG S.X., Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains. PLoS ONE, 8, e67353, 2013.
  • 6. ALBERT C.H., DE BELLO F., BOULANGEAT I., PELLET G., LAVOREL S., THUILLER W., On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 121, 116, 2012.
  • 7. HATTENSCHWILER S., JORGENSEN H.B., Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol., 98, 754, 2010.
  • 8. TRAP J., HATTENSCHWILER S., GATTIN I., AUBERT M., Forest stand ageing: An unexpected driver of beech leaf litter quality variability in European forests with strong consequences on soil processes. Forest Ecology and Management, 302, 338, 2013.
  • 9. MATTHIEU C., ANDREI S.Z., ERNST G., VOLKMAR W., How do soil fauna and soil microbiota respond to beech forest growth? Current Zoology, 55, 272, 2009.
  • 10. TRAP J., LAVAL K., AKPAK-VINCESLAS M., GANGNEUX C., DECAENS T., AUBERT M., Humus macro-morphology and soil microbial community changes along a 130-yr-old Fagus sylvatica chronosequence. Soil Biology and Biochemistry, 43, 1553, 2011.
  • 11. MERILA P., MALMIVAARA-LAMASA M., SPETZ P., STARK S., VIERIKKO K., DEROME J., FRITZE H., Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Appl. Soil Ecol., 46, 259, 2010.
  • 12. JANUSAUSKAITE D., BALIUCKAS V., ZENONAS D., Needle Litter Decomposition of Native Pinus sylvestris L. and Alien Pinus mugo at Different Ages Affecting Enzyme Activities and Soil Properties on Dune Sands. BALTIC FORESTRY, 19, 50, 2013.
  • 13. MUKHOPADHYAY S., JOY V.C., Influence of leaf litter types on microbial functions and nutrient status of soil: Ecological suitability of forest trees for afforestation in tropical laterite wastelands. Soil Biology & Biochemistry 42, 2306, 2010.
  • 14. XIAO W.F., GE X.G., ZENG L.X., HUANG Z.L., LEI J.P., ZHOU B.Z., LI M.H., Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus massoniana Forests in the Three Gorges Reservoir Area, China. PLoS ONE, 9, e101890, 2014.
  • 15. BERBECO M.R., MELILLO J.M., ORIANS C.M., Soil warming accelerates decomposition of fine woody debris. Plant and soil, 344, 1000, 2012.
  • 16. FIERE N., CRAINE J.M., MCLAUCHLAN K., SCHIML J.P., Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320, 2005.
  • 17. CORTEZ J., Field decomposition of leaf litters: relationship between decomposition rates and soil moisture, soil temperature and earthworm activity. Soil Biology and Biochemistry, 30, 783, 1998.
  • 18. WANG C.Y., HAN G.M., JIA Y., FENG X.G., TIAN X.J., Insight into the temperature sensitivity of forest litter decomposition and soil enzymes in subtropical forest in China. Journal of Plant Ecology, 5, 279, 2012.
  • 19. FAO, ISRIC, ISSS World Reference Base for Soil Resources. Report No. 103. World Soil Resources Reports, Rome. 2006.
  • 20. Forestry Standards “Observation Methodology for Longterm Forest Ecosystem Research” of People’s Republic of China (LY/T 1952-2011), FERN: Beijing, China, 2011.
  • 21. NELSON D., SOMMERS L., Total carbon, organic carbon, and organic matter. In: SPARKS D.L., PAGE A.L., HELMKE P.A., LOEPPERT R.H., SOLTANPOUR M.A., TABATABAI M.A., JOHNSTON C.T., SUMNER M.E., Methods of soil analysis. Part 3, Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, 961, 1996.
  • 22. KEENEY D.R., NELSON D.W., Nitrogen-inorganic forms. In Methods in soil analysis. Part 2. Chemical and microbiological properties. Edited by A.L. Page and R.H. Miller. American Society of Agronomy, Madison, Wis. 643, 1982.
  • 23. ROWLAND A.P., ROBERTS J.D., Lignin and cellulose fractionation in decomposition studies using acid-detergent fiber methods. Commun Soil Sci Plan, 25, 269, 1994.
  • 24. GELSOMINO A., AZZELLINO A., Multivariate analysis of soils: microbial biomass, metabolic activity, and bacterial community structure and their relationships with soil depth and type. Journal of Plant Nutrition and Soil Science, 174, 381, 2011.
  • 25. WARDLE D.A., Comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Camb. Philos. Soc., 67, 321, 1992.
  • 26. VANCE E.D., BROOKES P.C., JENKINSON D.S., An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703, 1987.
  • 27. MAITY S.K., JOY V.C., Effect of polyphenols in leaf litter on energy content and respiration of soil arthropod species. International Journal of Ecology and Environmental Sciences, 27, 45, 2001.
  • 28. ANDERSON J.P.E., DOMSCH K.H., The metabolic quotient for CO₂ (qCO₂) as a specific activity parameterto assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem., 25, 393, 1993.
  • 29. GAO J., KANG F.F., LI T.Y., SONG X.S., ZHAO W.H., YU X.W., HAN H.R., Assessing the Effect of Leaf Litter Diversity on the Decomposition and Associated Diversity of Fungal Assemblages. Forests, 6, 2371, 2015.
  • 30. OLSON J.S., Energy storage and balance of producers and decomposers in ecological systems. Ecology, 44, 322, 1963.
  • 31. BARLOCHER F., Leaf mass loss estimated by litter bag technique. In: Graca MAS, Barlocher F, Gessner MO (eds) Methods to study litter decomposition - a practical guide. Springer, Dordrecht, 37, 2007.
  • 32. BELL T., AGER D., SONG J.I., NEWMAN J.A., THOMPSON I.P., LILLEY A.K., VAN DER GAST C.J., Larger islands house more bacterial taxa. Science, 308, 1884, 2005.
  • 33. RECHE I., PULIDO-VILLENA E., MORALES-BAQUERO R., CASAMAYOR E.O., Does ecosystem size determine aquatic bacterial richness? Ecology, 86, 1715, 2005.
  • 34. TREVORS J.T., KEVAN P.G., TAM L., Microbial diversity across a Canadian sub-Arctic, isostatically rebounding, soil transect. Polar Sci., 4, 81, 2010.
  • 35. GRACE J.B., MICHAEL A.T., SMITH M.D. Does species diversity limit productivity in natural grassland communities? Ecol. Lett., 10, 680, 2007.
  • 36. WANG J., YOU Y.M., TANG Z.X., LIU S.R., SUN O.J.X., Variations in leaf litter decomposition across contrasting forest stands and controlling factors at local scale. Journal of Plant Ecology, 8, 261, 2014.
  • 37. WU D.D., LI T.T., WAN S.Q., Time and litter species composition affect litter-mixing effects on decomposition rates. Plant Soil, 371, 355, 2013.
  • 38. TALBOT J.M., YELLE D.J., NOWICK J., TRESEDER K.K., Litter decay rates are determined by lignin chemistry. Biogeochemistry, 108, 279, 2012.
  • 39. PRESCOTT C.E., Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 101, 133, 2010.
  • 40. RYAN M.G., BINKLEY D., FOWNES J.H., Age-related decline in forest productivity: Pattern and process. In: Advances in Ecological Research, Academic Press Ltd., London, 27, 213, 1997.
  • 41. JACOB M., VIEDENZ K., POLLE A., Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia, 164, 1083, 2010.
  • 42. BRAIS S., CAMIRE C., BERGERON Y.P.D., Changes in nutrient availability and forest floor characteristics in relation to stand age and forest composition in the southern part of the boreal forest of northwestern Quebec. Forest Ecology and Management, 76, 181, 1995.
  • 43. ZHAO J.L., KANG F.F., WANG L.X., YU X.W., ZHAO W.H., SONG X.S., ZHANG Y.L., CHEN F., SUN Y., HE T.F., HAN H.R., Patterns of Biomass and Carbon Distribution across a Chronosequence of Chinese Pine (Pinus tabulaeformis) Forests. PLoS ONE, 9, e94966, 2014.
  • 44. CHENG X.Q., HAN H.R., KANG F.F., SONG Y.L., LIU K., Variation in biomass and carbon storage by stand age in pine (Pinus tabulaeformis) planted ecosystem in Mt. Taiyue, Shanxi, China. Journal of Plant Interactions, 9, 521, 2014.
  • 45. VIVANCO L., AUSTIN A.T., Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Glob Change Biol., 17, 1963, 2011.
  • 46. LIU P., HUANG J., SUN O.J., HAN X., Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 162, 771, 2010.
  • 47. ANANYEUA N.D., SUSYAN E.A., CHERNOVA O.V., WIRTH S., Microbial respiration activities of soil from different climatic regions of European Russia. European Journal of Soil Biology, 44, 147, 2008.
  • 48. LIU J., XIA H.J., WANG J.Z., ZHANG W.L. Bioactive characteristics of soil microorganisms in different-aged orange (citrus reticulate) plantations. Agricultural Science & Technology, 13, 1277, 2012.
  • 49. VIVANCO L., AUSTIN A.T., Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol., 96, 727, 2008.
  • 50. BOLAT I., The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey. Eur J Forest Res., 133, 131, 2014.
  • 51. BORKEN W., MUHS A., BEESE F., Application of compost in spruce forests: effects on soil respiration, basal respiration and microbial biomass. Forest Ecology and Management, 159, 49, 2002.
  • 52. YOU Y., WANG J., HUANG X., TANG Z., LIU S., SUN O.J., Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol Evol., 4, 633, 2014.
  • 53. GAMA-RODRIGUES E.F., BARROS N.F., GAMA-RODRIGUES A.C., SANTOS G.A., Carbon, nitrogen and activity of microbial biomass in soil under eucalypt plantations. Rev. Bras. Cienc. Solo., 29, 893, 2005.
  • 54. ROUIFED S., HANDA I.T., DAVID J.F., HATTENSCHWILER S., The importance of biotic factors in predicting global change effects on decomposition of temperate forest leaf litter. Oecologia, 163, 247, 2010.
  • 55. BALDOCK J.A., Composition and cycling of organic carbon in soil. In: Marschner, P., Rengel, Z. (Eds.), Nutrient Cycling in Terrestrial Ecosystems, Part-1. Soil Biology, 10, 1, 2007.
  • 56. CONN C., DIGHTON J., Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol. Biochem., 32, 489, 2000.
  • 57. DIAZ-RAVINA M., ACEA M.J., CARBALLAS T., Microbial biomass and its contribution to nutrient concentrations in forest soils. Soil Biol. Biochem., 25, 25, 1993.
  • 58. HOPKINS D.W., BADALUCCO L.C., ENGLISH S.M., MELI J., CHUDEK A., IOPPOLO A., Plant litter decomposition and microbial characteristics in volcanic soils (Mt Etna. Sicily) at different stages of development. Biology and Fertility of Soils, 43, 461, 2007.
  • 59. BRANDSTATTER C., KATHARINA K., WANEK W., SOPHIE Z.B., A closeup study of early beech litter decomposition: potential drivers and microbial interactions on a changing substrate. Plant Soil, 371, 139, 2013.
  • 60. PASCOAL C., CASSIO F., Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology, 70, 5266, 2004.
  • 61. BALDRIAN P., SNAJDR J., MERHAUTOV V., DOBIASOVA P., CAJTHAML T., VALASKOVA V., Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology & Biochemistry, 56, 60, 2013.
  • 62. KOTROCZO Z., VERES Z., FEKETE I., KRAKOMPERGER Z., TORTH J.A., LAJTHA K., TOTHMERESZ B., Soil enzyme activity in response to long-term organic matter manipulation. Soil Biology & Biochemistry, 70, 237, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b1011ce6-4e8d-457c-b3ed-05c6918e4dfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.